

Agenda

Umicore in 2 slides

Umicore Battery Recycling

 History and investment
 Process capabilities/benefits
 Process description
 Pilot plant
 Safety issues
 Scale up
 Life cycle analysis
 Conclusions

Umicore in 2 slides

Umicore today- a materials technology group

"Less is more"

Metal related materials can be efficiently and infinitely recycled, which makes them the basis for sustainable products and services

Umicore's businesses today

Energy Materials	Catalysis
 We develop materials which enable the clean production and storage of energy The business is driven by the demand for clean, low-carbon energy solutions 	 We develop technologies to treat automotive emissions The business is driven by increasingly stringent emission norms to promote clean air
Recycling	Performance Materials
 We operate a unique recycling process to deal with complex industrial residues and end-of-life materials The business is driven by materials scarcity and recycling legislation 	 We produce a range of essential materials and chemicals based on precious metals and zinc Diverse applications: e.g. high-purity glass, construction, pharma, electrics/electronics

Umicore Battery Recycling

History and investment

Umicore competencies to develop a recycling process for rechargeable batteries

Based on Umicore's long technological history (1880's), unique competencies have been developed in following areas:

Metal recycling

 -pyro-metallurgy
 -hydro-metallurgy

Cobalt and Nickel compounds refining and production
 -9,000 metric tons of Cobalt per year = Market Leader

Battery compounds developer and manufacturer

-LiCoO₂, LiMeO₂ [LCO, LCA, CMA, NCA,...)

-Nickel hydroxide, other Cobalt and Nickel compounds

Recycling of NiMH and Li-ion batteries

Umicore's Closed Loop Solution

Small Applications

Industrial Applications

(H)EV

Closing the loop for rechargeable batteries

Umicore's recycling process gathers rewards

Umicore nominated as one of Europe's most innovative clean tech companies

Umicore Battery Recycling

Process capabilities and benefits

Pack dismantling line – U.S. + Germany

- □ Maxton, North Carolina, USA semi-automated line
- □ Hanau, Germany manual line
- Dismantling avoids transport of parts which are 'easy' to recycle locally
- Creates valuable, more basic, jobs

Specific economic benefits

Move away from dependence on mining

2 No subcontractors

- **3** Complete destruction of used batteries.
- Availability of electronics recycling making one-stop shop
- **O** Possibility to return recycled battery materials

Specific environmental benefits

- **1** High Recycling Efficiency (RE): > 50% per EU Battery Directive
- **2** No hazardous pretreatment
- S Gas cleaning process
- The whole process is energy efficient.

Umicore Battery Recycling

Process description

Recycling process

Products from UHT battery process less than 3% land filled today

Umicore Battery Recycling

Pilot plant

Feed structure

Small applications

Industrial applications

Recycling process Feeding equipment / batteries handling

- No dismantling, crushing...
 - Safe for workers
 - Safe for Environment
 - Cost Effective
- For any size of batteries
 - Small electronic appliances
 - Industrial batteries
 - HEV/ EV batteries

EVE-IWG II Baltimore, September 14, 2012

Recycling process Smelting batteries

EVE-IWG II Baltimore, September 14, 2012

- Specially designed furnace
 - Intellectual property of Umicore
 - No explosion of batteries (safety)
 - No cell dismantling/No cell shredding

• Products

- Alloy
- Slags

Recycling process Smelting batteries

EVE-IWG II Baltimore, September 14, 2012

- Specially designed gas treatment
 - A unique Umicore design
 - No VOC formation
 - All dust removed
- Gas cleaning technology
 - Low volume gas
 - Low CO₂ footprint

Li-ion battery slag

Slag composition

- main components: $CaO Al_2O_3 SiO_2$
- minor components: FeO_x Li₂O MnO

Application as an aggregate in concrete

Umicore committed to closing the loop

Umicore is also focusing on the other elements in the batteries:

- Recovery on R&D Level
 - -Lithium: extraction of Li from slag
 - -Fluor: fluorspar
- Operational
 - -Rare Earths: NiMH battery slag

Umicore Battery Recycling

Safety issues

Safety – Environment – Health first!

Energy contentImage: Description of the second second

Transport

- Supplier: knowledge of battery composition, safety precautions
- Umicore: knowledge transport rules (land, sea, air, national & international)
- Safe procedure to be developed for larger quantities
- Dismantling
- Supplier: to supply relevant information (BOM, MSDS, safety instructions)
- Umicore: to design safe process with zero risk

Umicore Battery Recycling

Robust and easily scaled up

Umicore's recycling process is robust (1/2)

Early stage standardization and **volume driven** unit process: recovery of metals

- Minimum sorting and mechanical preconditioning
- Pyrometallurgical separation of metals; use of organics as fuel or reducing agent
- Resulting metal alloy can be used as such or is further refined Ideally, metals are further refined to the level that they can be transformed into new battery materials

Umicore's recycling process is robust (2/2)

- Allows any metal composition input to deliver a standard metal alloy
- Output allows straightforward manufacturing of battery materials regardless of the input battery grade
- → Typically large scale, volume driven installation

Umicore's recycling process can be <u>easily scaled up</u>:

	Small Recycling Plant	Large Recycling Plant	Comments	
Process Cost	High	Low	Some element recycling needs scale effects to become profitable	
Transport • Batteries • Recycled Products	Less More	More Less	 Distance travelled Several recycled products are special products with no local market 	
Energy Efficiency	Worse	Better	Generally speaking: energy efficiency measures pay o better in large installations	
Investments	Incremental	Capital	To cope with growing business, small plants can follow market needs more precisely	

• Appropriate capacity for recycling plant depends on:

-process

-markets for recycled products

 \rightarrow LCA can help to assess the environmental aspects of the above.

Scale up issues and cost benefits

Umicore Battery Recycling

Life cycle analysis

Life cycle analysis published

Several LCA's, together with customers:

➢ Recycling reduces

- global warming
- acidification potential
- ozone depletion potential of EV's
- (impact reductions from 20 to > 90 %)
- Very low CO₂-footprint and nearly no added external energy even if transport of batteries is included in the LCA scope
- >. Resource efficiency: Metals are infinitely recyclable
- Study by University of Ghent shows more than 50 % resource efficiency credits
- >. Chemicals used in the process are recycled for construction

Resource savings by battery recycling

Conclusions

Umicore's 7,000 metric tons battery recycling facility

Summary

Umicore is closing the materials loop Umicore is recycling in an environmentally sound way.

Above all, the process developed by Umicore combines many advantages:

□No hazardous pre-processing of batteries; i.e., no shredding

- No hazardous gas produced: gas treatment installation avoids any formation of dioxins or VOC's
- The materials loop is closed: main metals are re-used in new battery technologies or other high end applications
- □All plastics are fully utilized as energy source
- Plant design will enable significant cost decrease with growing market availability of feed
- Process can handle large variability of Li-ion battery chemistries and returns stable quality alloy for easy processing into high quality battery materials

Thank you

www.batteryrecycling.umicore.com

www.umicore.com

Battery cell materials are well characterized (ANL 2010) and each has its use and destination within the UHT process

Materials	Weight (kg)	Percent	UHT Destination
LiO2	0.91	5.3%	Slag
Nickel	0.46	2.7%	Alloy
Cobalt	0.46	2.7%	Alloy
Manganese	0.43	2.5%	Slag
Graphite and carbon	1.82	10.6%	Energy & Reducer
Binder	0.35	2.0%	Energy & [F] Flue Dust
Copper parts	4.21	24.5%	Alloy
Aluminum parts	3.2	18.6%	Reducer & Slag
Aluminum Casing	1.82	10.6%	Reducer & Slag
Electrolyte	1.5	8.7%	Energy & [F] Flue dust
Polypropylene	1.39	8.1%	Energy & Reducer
Polyethylene	0.492	2.9%	Energy & Reducer
Steel	0.029	0.2%	Alloy
Thermal insulation	0.089	0.5%	Energy
Electronic parts	0.056	0.3%	Alloy
Total Battery Mass	17.216	100.0%	
EVE-IWG II	39		

Baltimore, September 14, 2012

Battery cell materials are well characterized (ANL 2010) and each has its use and destination within the UHT process

Materials	Weight (kg)	Percent	UHT Destination
LiO2	0.91	5.3%	Slag
Nickel	0.46	2.7%	Alloy
Cobalt	0.46	2.7%	Alloy
Manganese	0.43	2.5%	Slag
Graphite and carbon	1.82	10.6%	Energy & Reducer
Binder	0.35	2.0%	Energy & [F] Flue Dust
Copper parts	4.21	24.5%	Alloy
Aluminum parts	3.2	18.6%	Reducer & Slag
Aluminum Casing	1.82	10.6%	Reducer & Slag
Electrolyte	1.5	8.7%	Energy & [F] Flue dust
Polypropylene	1.39	8.1%	Energy & Reducer
Polyethylene	0.492	2.9%	Energy & Reducer
Steel	0.029	0.2%	Alloy
Thermal insulation	0.089	0.5%	Energy
Electronic parts	0.056	0.3%	Alloy
Total Battery Mass	17.216	100.0%	
EVE-IWG II	40		

Baltimore, September 14, 2012