Calculating Electric Drive Vehicle Greenhouse Gas Emissions Ed Pike, PE

ENERGY 80 LUTIONS

1610 Harrison Street
Oakland, CA 94612
www.energy-solution.com

Outline

Vehicle Efficiency Measurement

 Upstream Energy Supply GHG Intensity Determination

Vehicle Activity Level Determination

Additional Research Opportunities

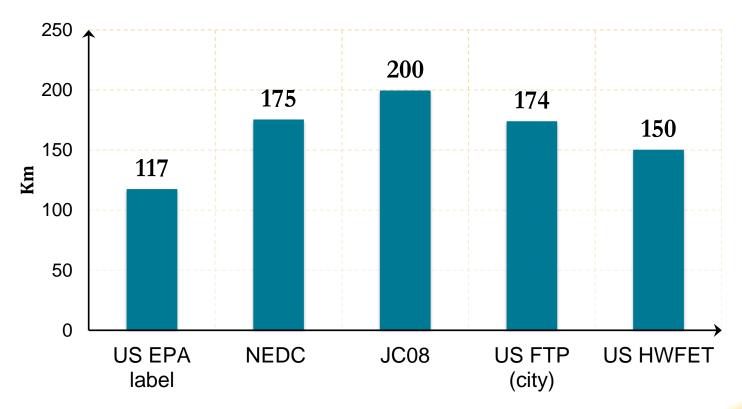


Calculating Electric Drive Vehicle Greenhouse Gas Emissions

Calculating
Electric Drive Vehicle
Greenhouse Gas Emissions

BY ED PIKE

www.thelcct.org communications@thelcct.org


BEIJING | BERLIN | BRUSSELS | SAN FRANCISCO | WASHINGTON

- White paper issued August 2012
- Available on International Council on Clean Transportation website: http://www.theicct.org/

Vehicle Efficiency Measurement: Effect of Test Cycle on Range

US EPA consumer label estimate and global test cycle measurements of Nissan Leaf range (sources: Nissan, US EPA)

Vehicle Efficiency Measurement

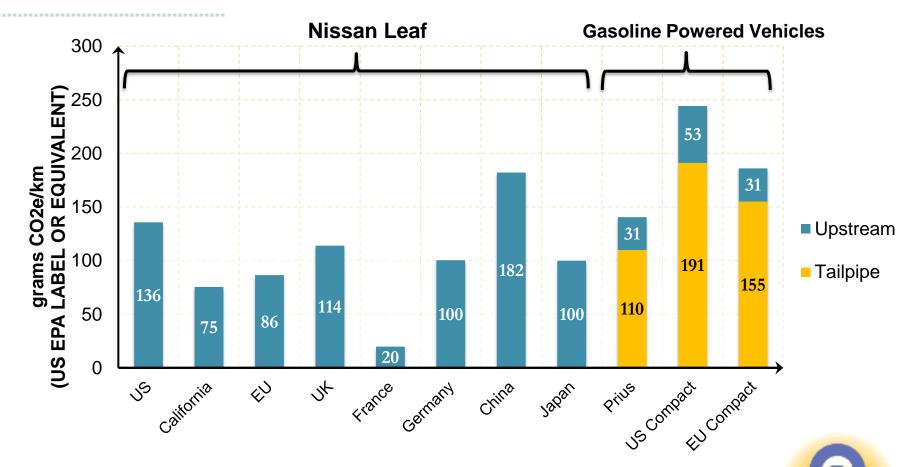
- Why are these ratings so different?
 - Speed
 - Acceleration (stop and go; aggressive driving)
 - Cabin climate control adjustment (US EPA label only)

Vehicle Efficiency Measurement

- Vehicle efficiency measurement
 - Use US EPA 5-cycle or similar test cycles to capture the effects of urbanization, aggressive driving, ambient temperature and cabin climate control
 - Evaluate edrive vehicle performance in the real world
 - Test with 240 V charging while monitoring usage of DC fast charging (and in the US 120V)

Upstream GHG Intensity

- Upstream energy supply GHG intensity determination
 - Use average electricity CO₂e intensity as a default
 - evaluate, as vehicle deployments grow over time, the feasibility of determining marginal CO₂e intensity
 - Regional factors can be applied if accurate data on vehicle placements and regional assessments of electricity CO₂e intensity are available
 - EU harmonization requirements impose special constraints



Upstream GHG Intensity

- Hydrogen CO₂e intensity factors should be adjusted for specific production processes when sufficient data is available, especially where renewable or low carbon hydrogen requirements are in place
- Edrive vehicle fuel-cycle emissions should be compared against the combined vehicle and fuel cycle emissions of internal combustion engine (ICE) vehicles

Upstream GHG Intensity

Projected 2015 Emissions (source: ICCT)

Vehicle Activity Level

- Vehicle activity level determination
 - Plug-in hybrid electric vehicle utility curves adjusted to account for blended operation that would extend charge depleting range
 - Edrive vehicle total emissions and emissions displaced based on relationship between daily travel range and annual vehicle kilometers traveled
 - Potential adjustment for battery electric vehicle range anxiety, and extra 'plugs'

Vehicle Activity Level

- Total emission calculations based on emission rates and activity levels
 - Useful for policy evaluation and inventory purposes.
 - Can be considered for weighting battery electric vehicle scores for regulatory compliance (ie CO₂e/km or liters/km)

Summing Up Proposed Emission Calculations

- Edrive grams CO₂e/km = kwh or kg H₂/km x fuel GHG intensity
- Edrive tons CO₂e/year =
 edrive activity level x gCO₂e/km
- Edrive avoided tons CO₂e/year=
 (ICE tailpipe g CO₂e/km + ICE upstream gCO₂e/km edrive gCO₂e/km) x activity level

Battery efficiency

- Effect of hot and cold temperatures on battery discharge efficiency
- Effect of state of charge on battery discharge efficiency
- Effects of battery temperature management on overall efficiency (air or liquid cooling)

Vehicle efficiency

- Additional quantification of effect of cabin climate control on vehicle energy usage
- Comparison to current and also extremely efficient ICEs
 - Future hybrid ICE may have efficient electric air conditioning systems, but possibly insufficient "free" waste heat for cabin climate control

- Test cycles
 - Coordination of edrive vehicle test cycle development
 - Sharing of testing data

- Effect of vehicle utilization
 - Are electric drive vehicles driven differently from other vehicle categories, due to self selection and/or increased awareness?
 - Is there a linear relationship between plugs and range?
 - Is there a typical factor for 'range anxiety' that reduces battery electric vehicle daily travel and thus displacement of conventional vehicles?

- Edrive energy supplies GHG intensity
 - Marginal vs average emissions rate
 - Level of geographic specificity

- Additional potential upstream evaluation
 - Battery manufacturing

Thank you

epike@energy-solution.com(510) 482-4421 ex 239

