

Status of Korean EVs Regulations and Activities

2nd EVE IWG Meeting

Baltimore, MD

September 13, 2012

Dongseok CHOI

Korea Automobile Testing & Research Institute

Contents

1 KATRI's research capability

2 Korean research activities for EVs

3 Status of Korean EVs regulations

4 Suggestion for power of traction battery

Contents

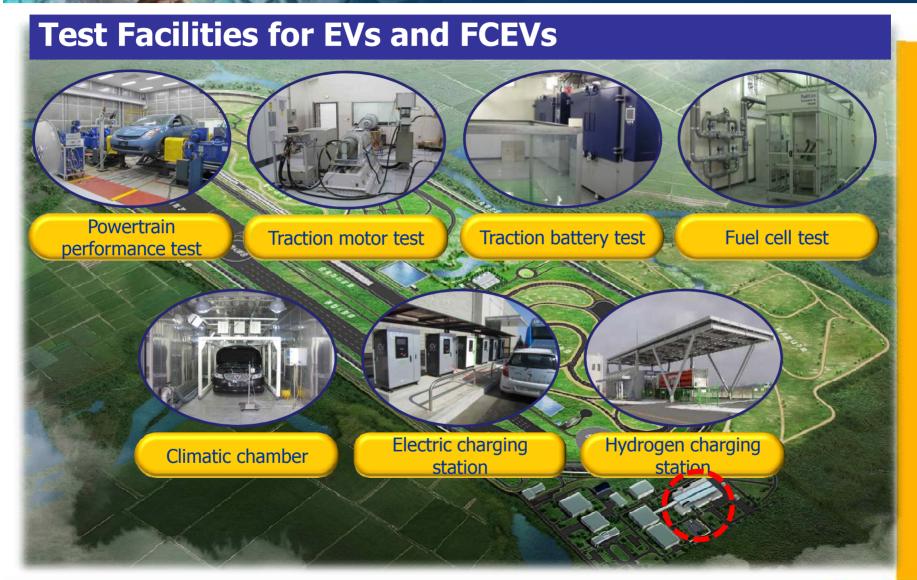
1 KATRI's research capability

- 2 Korean research activities for EVs
- 3 Status of Korean EVs regulations

4 Suggestion for power of traction battery

KATRI's Research Capability

Major Work



KATRI's Research Capability

KATRI's Research Capability

Contents

1 KATRI's research capability

2 Korean research activities for EVs

- 3 Status of Korean EVs regulations
- 4 Suggestion for power of traction battery

Korean EVs Research Activities

1. Research on the development of safety-Assessment Procedures for HEV

Objective	Amendment of the Safety standard for HEV	
Period	Oct. 2006 ~ Sep. 2008	
Participant	KATRI, SK Innovation, KESCO, MANDO	
Task	 Safety standards will be applied according to performance test procedures for HEV to find out problems and solutions Amendment of the safety standards for HEV Power performance, Braking ability, Accelerator control system Defrost and demist, EMC, Crashworthiness, High voltage system and Traction battery 	
Result	 Amendment of KMVSS (8 Articles): Jan.23,2009 Amendment: Article 2(Definitions), 11(Motor and Transmission System), 15(Brake System), 91(Fuel System), 111(Motor Power), 111-2(EMC) Newly added: Article 18-2(High voltage electric device), 18-3(Traction Battery) Amendment of KMVSS Test Procedure (7 Items): Feb.19,2009 	

Korean EVs Research Activities - continued

2. Research on the development of safety-Assessment Procedures for FCEV

Objective	To amend safety standards for HFCV and consequently reflect research results to vehicle management policy
Period	Dec. 2007 ~ Dec. 2012
Participant	KATRI, HMC, SNU, SKKU, KESCO, YURA CO. etc.
Task	 Development of a technique for safety assessment of FCEV Regulation system and policy Research for safety of hydrogen storage and supply system Assessment of compliance with safety standards of FCEV Research for electric safety of high-voltage and fuel cell system International harmonization of safety standards for FCEV Development of safety standards for hydrogen storage, supply system and fail safety
Result	 Amendment of KMVSS (10 Articles): in 2012 Article 17(Fuel System), 18-2(High voltage electric device),37(Muffler), 87(Accelerator Control System), 90(Brake System), 91(Fuel System), 102(Occupant Protection), 109(Defrost and demist), 111(Motor Power, TB power, Fuel cell power), 111-2(EMC) Amendment of KMVSS Test Procedures (15 Items): in 2012

Korean EVs Research Activities - continued

3. Monitoring Program of EVs

		_
Objective	Identify problems regarding safety and develop the plan of improvement during field monitoring]
Period	Apr. 2010 ~ Dec. 2012	
Participant	KATRI	
Task	•	
Result	 Amendment of KMVSS Test Procedure(3 Items): 2012~2013 	

Contents

1 KATRI's research capability

- 2 Korean research activities for EVs
- **3** Status of Korean EVs regulations
- 4 Suggestion for power of traction battery

Status of Korean EVs Regulations

KMVSS (Regulation on Korea Motor Vehicle Safety Standard)

■ Promulgation: Jan. 23, 2009 Result of Research on HEV Safety

Article	Description	Remark
Article 2 Definition	52. High voltage electric device,53. Traction Battery, 54. Traction motor,55. Live parts	-
Article 18-2 High voltage electric device	Safety for high voltage electric device (Isolation, Protection against indirect contact)	EVS item Plan to Amend in 2012 by result of research on FCEV safety
Article 18-3 Traction Battery (RESS)	Safety for traction battery	EVS item
Article 91 Fuel System	Safety for high voltage electric device after collision test	EVS item
Article 111 Engine Power	Power of ICE and traction motor (To be added the power of traction battery and fuel cell)	EVE item Plan to amend in 2012 by result of research on FCEV safety
Article 111-4 Fuel Consumption Rate	Fuel economy , Energy efficiency Vehicle range	EVE item

Status of Korean EVs Regulations

KMVSS Test Procedure

■ Promulgation: Feb.19, 2009 Result of Research on HEV Safety

Article	Description	Remark
Annex 1 -Part 23 Test Procedures of engine power	 Application: HEV, PHEV, EV, FCEV Test items: power of ICE and Traction motor Test Procedure Net power test Max. 30 minutes power for traction motor 	Similar to UN Regulation No. 85

- Plan to amend in 2012 Result of Research on FCEV Safety
 - Test Procedures of Power of Traction Battery and Fuel cell for HEV, PHEV, EV and FCEV

Contents

1 KATRI's research capability

- 2 Korean research activities for EVs
- 3 Status of Korean EVs regulations

4 Suggestion for power of traction battery

Motivation for Power Test of Traction Battery

- 1. The power test of a traction motor uses a external power source.
 - (UN Regulation No. 85)
 - -> There is no regulation for checking the power of traction battery.
 - 5.3. Description of tests for measuring the net power and the maximum 30 minutes power of electric drive trains

The electric drive train shall be equipped as specified in annex 6 to this Regulation. The electric drive train shall be supplied from a DC voltage source with a maximum voltage drop of 5 per cent depending on time and current (periods of less than 10 seconds excluded). The supply voltage of the test shall be given by the vehicle manufacturer.

- 2. The test method has to be determined from discharge patterns of vehicle test.
 - -> Constant power test is more realistic than constant current test.

Comparison between Several Standards

Items	ISO 12405-1	SAE J1798	CP* test
Description	International Standard	US Standard	Maker test method
Enacted year	2010	1997	-
Test unit	System	modules	System
	- Test profile	- Test profile	- No test profile
Test method	- Constant current	- Constant current	- Constant power
	discharge	discharge	discharge
	- Different power at SOCs		- Easy to determine
Characteristics	- Different discharge pattern	←	max. power
	comparing vehicle discharge		

* CP: Constant Power

Test Devices

PNE450 /400

- Voltage/Current: 450V DC / 200A DC

- Power: ±90kW

- Channel No.: 2CHs

- Working mode : CC / CP / CR / CC-CV mode

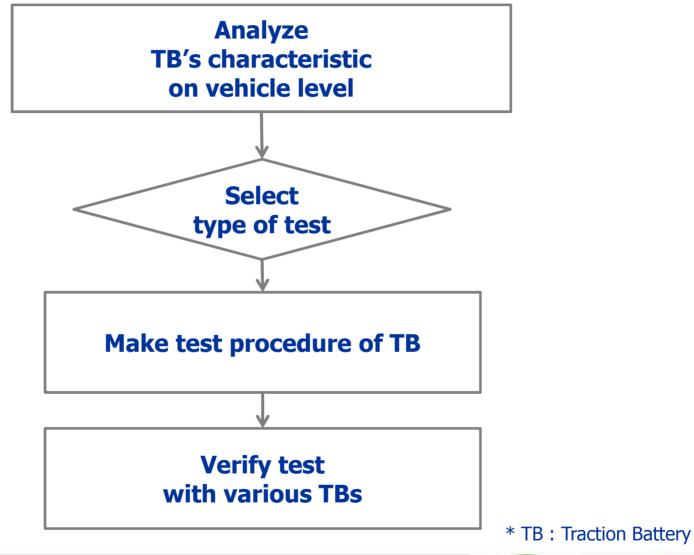
PNE1000 /50

- Voltage/Current: 1,000V DC/ 50A DC

Power: ±150kWChannel No.: 1CH

- Working mode : CC / CC-CV mode

ABC 600


- Voltage/Current : 600V DC/ 300A DC

- Power: ±150kW

- Channel No.: 2CHs

- Working mode : CC / CP / CR / CC-CV mode

Development Flow for Test Procedure of TB

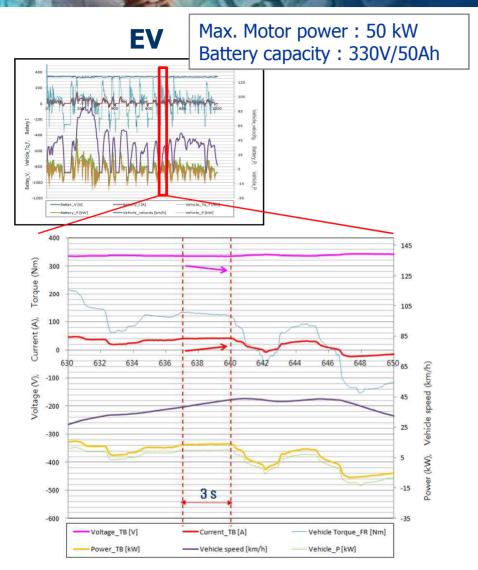
Test Setup for Vehicle Level Test

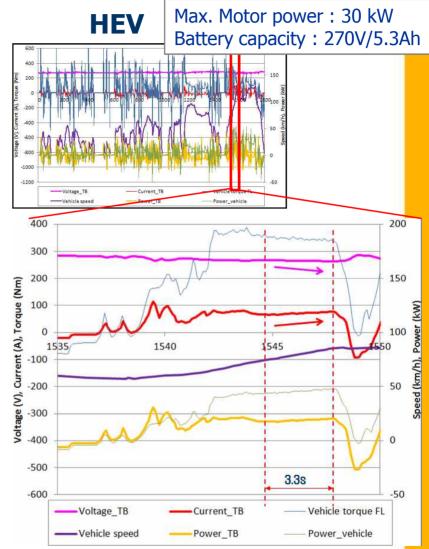
<u>EV</u>

Max Motor power: 50 kW Battery capacity: 330V/50Ah

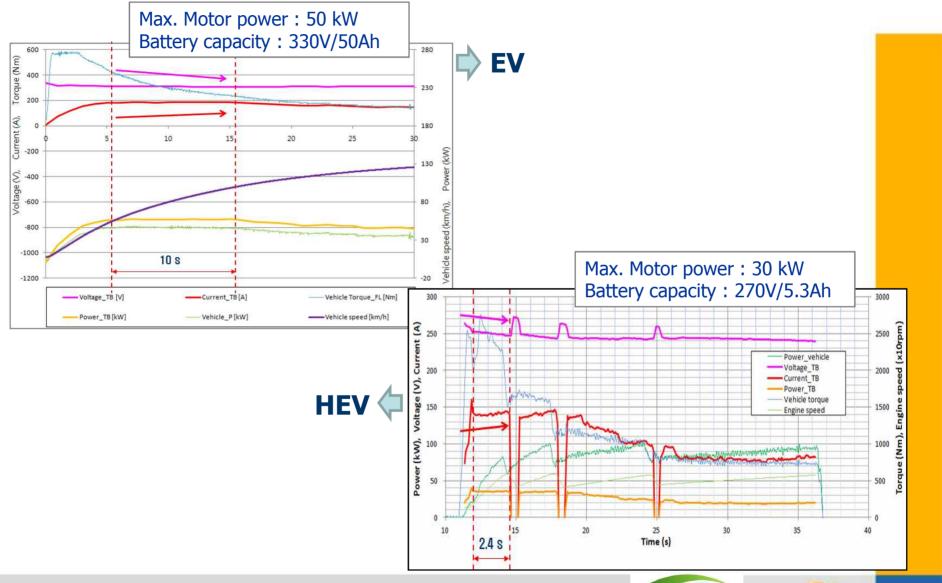
<u>HEV</u>

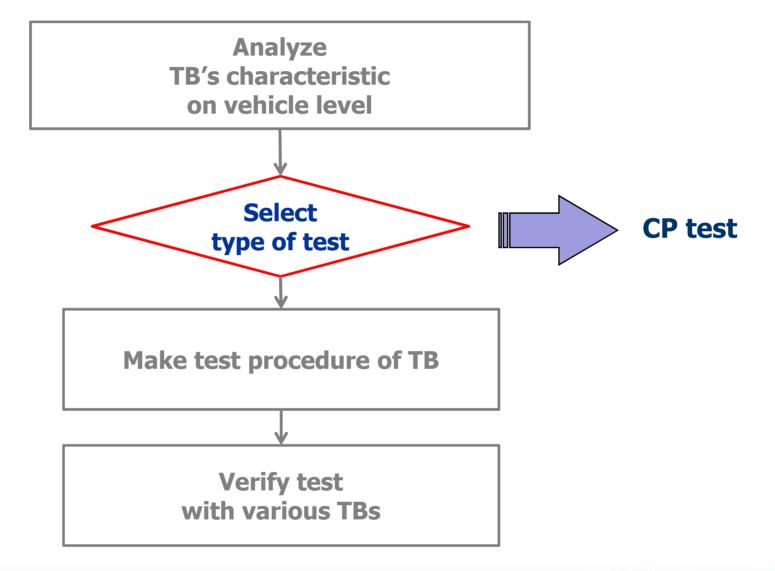
Max Motor power: 30 kW Battery capacity: 270V/5.3Ah


- Vehicle data from Powertrain test bed
 - Wheel Torque of vehicle
 - Speed of vehicle
 - Power of vehicle


- Traction battery's Data from DAQ
- Voltage of TB
- Current of TB
- Power of TB

Test of Vehicle Level (Driving cycle)




Test of Vehicle Level (Full Load Test)

Development Flow for Test Procedure of TB


Specification of Batteries for CP Test

DUT-A (High	Energy)	DUT-B (High Power)	
Li-ion	Туре		Li-polymer
3(par.) x 24(ser.)	cell × module		8(ser.) x 6(ser.)
76.8	Nominal voltage (V)		180
120	Nominal capacity (Ah)		5.3
9.2	Nominal energy (kWh)		0.954
2C, 240A	I _{max} (A)		20C, 106A
17.6	Max. power (kW)		17.8
(SOC 80%, 5 sec)			(SOC 30%, 5 sec)
-20 ~ 55	Working Temp. Range (°C)		-40 ~ 65

Test Results

< High-energy battery >

- **Step 1. Check rated capacity (120 Ah)**
- Step 2. Set SOC 80% by discharge after full charging
- Step 3. Discharge at 17.6 kW to the end voltage of discharge

< High-power battery >

- Step 1. 5. Check rated capacity (5.3 Ah)
- Step 2. Set SOC 30% by discharge after full charging
- Step 3. Discharge at 17.8 kW to the end voltage of discharge

Summary and Future Plan

< Test Procedure for Traction-Battery Power >

Step 1: Test Voltage, SOC, and discharging time shall be given by manufactures.

Step 2 : Check rated capacity of test battery three times.

Step 3 : Set the given SOC by discharging after full charge.

Step 4 : Discharge by the maximum Power during the given discharging time.

Step 5 : Report the test result.

< Future Plan >

To verify the test procedure for various types of TBs

Thank you for your attention!

dsechoi@ts2020.kr

