UPDATE ON CERTIFICATION TEST DEVELOPMENT

prepared by: Paul Depinet, John Below, John Stephens, Dennis Moeller, John Arthur, Lars Beholz, Gus Serrano, Travis West, Casey Linzmeier, Alexis de Leon, Niccole Theisen-Godin

01/29/14
Agenda

• Goal – reminder
• Test Documentation
• Drawings for UN
• Tests under development
 o Current Status
 o Issues
 o Plans
• Finishing dummies for Injury Criteria Development
 o VRTC dummies, BASt dummy
Goal - reminder

• Develop certification tests which can control dummy reproducibility
 o Must control setup of neck muscle substitutes and damper
 o Must detect critical differences between dummies found in vehicle seat R&R work
 ▸ Spine bumper stiffness
 ▸ Jacket stiffness
 ▸ Pelvis stiffness
Test Documentation

• **Spine quasi-static setup** *(have corridors)*
 o Set springs and thorax/lumbar shape adjustment
 o Procedure in Mutual Resolution

• **Jacket only impact** *(have corridors)*
 o Control jacket stiffness
 o Procedure ready for comment in document (1/27/14)

• **Pelvis only impact, bottom** *(have corridors)*
 o Control pelvis stiffness
 o Procedure ready for comment in document (1/27/14)

• **Dummy certification without head restraint** *(reviewing corridors)*
 o Set damper, verify correct spring & shape adjustments
 o Procedure ready for comment in document (1/27/14)
Test Documentation

• Test System Verification (*have corridors*)
 o Make sure ETD is R&R and setup is functioning correctly
 o Procedure ready for comment in document (1/27/14)

• Head Impact Pad Verification (*corridors TBD*)
 o Make sure headrest pad is R&R
 o Procedures under development

• Dummy certification with head rest (*corridors TBD*)
 o Check complete system performance
 o Test & procedures under development
Test Documentation – Inspection Tests

• Pelvis shape verification (**corridors TBD**)
 o Make sure shrinkage is not too large
 o Test & procedures under development

• Bumper compression on spine (**corridors TBD**)
 o Check change in bumper stiffness
 o Test & procedures under development

• Pelvis quasi-static compression check (**corridors TBD**)
 o Check change in pelvis stiffness
 o Test & procedures under development
Test Documentation

• Generic procedure for UN MR
 o Draft 1/27/14 provided for review
 ‣ Tried to make generic for regulation
 ‣ Only necessary information
 ‣ Not limit future improvements
 o Please review and comment
 ‣ Procedures themselves
 ‣ Appropriate level of information

• We will do update with comments to provide for inclusion into MR
 o Will leave thorough formatting for after put into MR
Drawings for UN

• Updates in Process
 o Engineer has marked up all drawings based on TEG comments and complete review
 ‣ Entered into our ECO system & provided to CAD
 o Will provide samples for review next week
 ‣ Please review:
 ‣ Formatting, especially assembly & BOM
 ‣ How weldments will be handled
 o Will provide update on timing next week
Tests Under Development

• Current Status
• Issues
• Plans
Test Dev. – Current Status

• Dummy certification without head restraint
 o Finalize corridors
 o Discuss rotation measurement methods for procedure
 ▸ Currently pots
 ▸ Allow other methods in UN procedure?
Dummy certification without head restraint

Tests Under Development
Dummy certification without head restraint

• Overlay data from R&R dummies plus one dummy changed to stiff bumpers (all bumpers in dummy)
 o Pre & post R&R from Huron, some data from HIS Heidelberg, some data from BASt
 o Stiff dummy data different color

• Existing corridors shown

• Time history envelopes calculated
 o +/- 2 std dev of R&R dummies
 o +/- 10% of peak of R&R dummies
Dummy certification without head restraint

• Questions
 o Are current corridors adequate?
 o Should we use some type of time-history corridors?
 o Can we drop some corridors?
 o Do you want to review data and discuss next week?
GR&R Dummies Pendulum Force
GR&R Dummies Pendulum Force

- 2 * Std Deviation
- 10% of Max

Upper Corridor
Lower Corridor
GR&R Dummies Sled Acceleration

![Graph of sled acceleration over time](graph.png)
GR&R Dummies Sled Acceleration
GR&R Dummies Sled Velocity
GR&R Dummies T₁ X Acceleration

Acceleration (m/s²) vs. Time (msec) graph with different lines indicating ±2 * Std Deviation, +10% of Max, -10% of Max, and 100 with stiff bumpers.
GR&R Dummies Upper Neck Moment

MY

+ 2 * Std Deviation
- 2 * Std Deviation
+10% of Max
-10% of Max
100 with stiff bumpers
Box 1
Box 2
GR&R Dummies Pot B - Neck Link
Rotation about T1 - A.xlsx
GR&R Dummies Pot B - Neck Link
Rotation about T1

Time (msec)
Rotation (deg)

+2 * Std Deviation
-2 * Std Deviation
+10% of Min
-10% of Min
+10% of max Peak
-10% of max Peak
Peak 1
Upper Tunnel 1
Upper Tunnel 2
Minimum
GR&R Dummies Total Head Rotation

Rotation (deg)

Time (msec)

+ 2 * Std Deviation
- 2 * Std Deviation
+10% of Min
-10% of Min
100 with stiff bumpers
Tunnel 1
Upper Tunnel
Lower Tunnel
GR&R Dummies Total Head Rotation

![Graph showing total head rotation against time with various curves indicating different deviations and tunnel levels.]

- Rotation (deg)
- Time (msec)
- +2 * Std Deviation
- -2 * Std Deviation
- +10% of Min
- -10% of Min
- Tunnel 1
- Upper Tunnel
- Lower Tunnel
GR&R Dummies Pot C - T1 Rotation

-25 0 25 50 75 100 125 150 175 200 225 250
Rotation (deg)

-25 0 25 50 75 100 125 150 175 200 225 250
Time (msec)

+ 2 * Std Deviation
- 2 * Std Deviation
+10% of Min
-10% of Min
100 with stiff bumpers
Upper Tunnel
Minimum
GR&R Dummies Pot D - Lower Thorax Rotation

Rotation (deg) vs. Time (msec) graph showing data points for different conditions:
- + 2 * Std Deviation
- - 2 * Std Deviation
+10% of Min
-10% of Min
100 with stiff bumpers
GR&R Dummies Total Thoracic Rotation

[Graph showing GR&R Dummies Total Thoracic Rotation with various data points and time in milliseconds.]
Test Development

• Pelvis shape verification
 o Status: collecting data with prototype tool
 o Issues: not sure if R&R yet

• Pelvis quasi-static compression check
 o Status: collecting data with prototype tool
 o Issues:
 ▸ not sure if R&R yet
 ▸ Not sure if provides useful additional information
Test Development

• **Bumper compression on spine**

 o **Status:**

 ‣ collecting data with prototype tool
 ‣ Done extensive testing on R&R dummies, engineering dummy, VRTC dummies

 ‣ Interesting results

 ‣ Probably an essential inspection

 o **Issues:**

 ‣ R&R is poor

 ‣ R&R must be improved to finalize procedure and methods
 ‣ Extensive work on this is currently being done
Tests Under Development

Bumper Compression On Spine
Bumper Compression on Spine

Time Series Plot of High Comp
Base Part = ARA-521

- Dummy
- 100 - stiff
- 54
- 71 - stiff
- 73
- 77
- 8599
Bumper Compression on Spine

Time Series Plot of High Comp
Base Part = ARA-520

Dummy
- 100 - stiff
- 54
- 71 - stiff
- 73
- 77
- 8599

Test

0077-1A
0077 #1
0077 #2
0077 #3
8599 #1
0071 #1
0071 #2
0071 #3
0054 #1
0054 #2
0054 #3
0054 #4
0054 #5
Bumper Compression on Spine

Time Series Plot of High Comp
Base Part = ARA-381-37

- Dummy
- 100 - stiff
- 54
- 71 - stiff
- 73
- 77
- 8599

Test
High Comp

©2014 Humanetics Innovative Solutions Inc.
Bumper Compression on Spine

Time Series Plot of High Comp
Base Part = ARA-381-30

- Dummy
- 100 - stiff
- 54
- 71 - stiff
- 73
- 77
- 8599
Bumper Compression on Spine

Time Series Plot of High Comp
Base Part = ARA-227

- Dummy
- 100 - stiff
- 54
- 71 - stiff
- 73
- 77
- 8599

©2014 Humanetics Innovative Solutions Inc.
Bumper Compression on Spine

Time Series Plot of High Comp
Base Part = ARA-220

- Dummy
- 100 - stiff
- 54
- 71 - stiff
- 73
- 77
- 8599

Test

High Comp

0 50 100 150 200
Test Development

• Dummy certification with head rest
 o 2 methods under discussion
 ‣ With Back support – fairly new
 ‣ Without back support – in use for some time
 ‣ At last meeting some objected to dropping older method without more data
 o Status:
 ‣ Collecting data post test on R&R dummies, VRTC dummies, engineering dummy with multiple stiffness bumpers on back support method
 ‣ Collect and review more lower neck data and with several stiffness bumpers on no back support method
 ‣ Data not ready to present yet
 o Issues: need better bumper information
Mini-sled with seat back & head restraint
Tests Under Development

Mini-sled WITH Head Restraint
Test Development

• Bumper stiffness control procedure
 o Historically controlled by hand durometer gage
 ‣ This method has very high variability – wide range of “real” durometers pass
 o Purchased new durometer stand
 ‣ Probably as good as it get
 ‣ On ASTM samples – best corridor possible is about +/- 3.5 points based on R&R study done on gage
 o Anecdotal: I have yet to find any company who has run a GR&R on durometer who will claim to be able to hold tighter than +/- 3 based on the results
 o Working on Compression test of bumpers
Test Development

• Compression test
 o 20% compression test using Universal test machine (UTM)
 o Our old stand has been giving us questionable data at times over last year
 o We have ordered a new, much more sophisticated stand
 ▸ Will be able to do far more extensive material testing
 ▸ Should be delivered in February
Test Development

• Bumper control is important to spine control
 o We have focused much of our time on this problem
 o Are having significant problems

• Two issues:
 o How to manufacture to a tight corridor
 ▸ Humanetics problem
 o How does material change over time
 ▸ Need to understand
 ▸ Need good certification/inspection tests to control dummy
Bumper Control

• Have created targets for compression stiffness based on R&R dummy bumpers
Bumper Control – Status & Issues

ARA-521: I Chart of Avg Force by Part Number

Test Date

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Test Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1</td>
<td>04-Jan-12</td>
</tr>
<tr>
<td>T-2</td>
<td>06-Feb-12</td>
</tr>
<tr>
<td>T-3</td>
<td>22-Feb-12</td>
</tr>
<tr>
<td>T-4</td>
<td>16-May-12</td>
</tr>
<tr>
<td>T-5</td>
<td>10-Dec-12</td>
</tr>
<tr>
<td>T-6</td>
<td>14-Oct-13</td>
</tr>
<tr>
<td>T-7</td>
<td>06-Jan-14</td>
</tr>
</tbody>
</table>

Individual Value

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1</td>
<td>415.8</td>
</tr>
<tr>
<td>T-2</td>
<td>269.4</td>
</tr>
</tbody>
</table>

©2014 Humanetics Innovative Solutions Inc.
Bumper Control – Status & Issues

Avg Durometer by Group
ARA-521

<table>
<thead>
<tr>
<th>Observation</th>
<th>Stiff</th>
<th>Soft</th>
<th>Std</th>
<th>T-1</th>
<th>T-2</th>
<th>T-3</th>
<th>T-4</th>
<th>T-5</th>
<th>T-6</th>
<th>T-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>43</td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>43</td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>43</td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>37</td>
<td>43</td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>13</td>
<td>37</td>
<td>43</td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>16</td>
<td>37</td>
<td>43</td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>19</td>
<td>37</td>
<td>43</td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>22</td>
<td>37</td>
<td>43</td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>25</td>
<td>37</td>
<td>43</td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>28</td>
<td>37</td>
<td>43</td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
</tbody>
</table>

©2014 Humanetics Innovative Solutions Inc.
Bumper Control – Status & Issues

ARA-520: I Chart of Avg Force by Part Number

Test Date

<table>
<thead>
<tr>
<th>04-Jan-12</th>
<th>06-Feb-12</th>
<th>22-Feb-12</th>
<th>10-Dec-12</th>
<th>26-Jun-13</th>
<th>14-Aug-13</th>
<th>20-Dec-13</th>
<th>08-Jan-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&R</td>
<td>R&R</td>
<td>STD</td>
<td>SOFT</td>
<td>T-1</td>
<td>T-2</td>
<td>T-3</td>
<td>T-4</td>
</tr>
</tbody>
</table>

Individual Value

| 1500 | 1250 | 1000 | 750 |

ARA-520: I Chart of Avg Force by Part Number
Bumper Control – Status & Issues

Avg Durometer by Group

ARA-520

<table>
<thead>
<tr>
<th>Durometer</th>
<th>Stiff</th>
<th>Soft</th>
<th>Std</th>
<th>T-1</th>
<th>T-2</th>
<th>T-3</th>
<th>T-4</th>
<th>T-5</th>
<th>T-6</th>
<th>T-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65</td>
<td>60</td>
<td>55</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

Observation

- Avg Durometer by Group
- ARA-520
Bumper Control – Status & Issues

ARA-381-37: I Chart of Avg Force by Part Number

Test Date

<table>
<thead>
<tr>
<th>Test Date</th>
<th>T-1</th>
<th>T-2</th>
<th>T-3</th>
<th>T-4</th>
<th>T-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-Jan-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05-Feb-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-May-12</td>
<td>11</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15-May-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>22-May-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-Aug-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>26-Aug-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>14-Oct-13</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-Oct-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>06-Jan-14</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Individual Value

<table>
<thead>
<tr>
<th>Test Date</th>
<th>R&R</th>
<th>STIFF</th>
<th>R&R</th>
<th>STIFF</th>
<th>STD</th>
<th>STIFF</th>
<th>SOFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-Jan-12</td>
<td></td>
<td>131.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05-Feb-12</td>
<td></td>
<td>131.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-May-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-May-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-Aug-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-Aug-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-Oct-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-Oct-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06-Jan-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARA-381-37: I Chart of Avg Force by Part Number
Bumper Control – Status & Issues

Avg Durometer by Group

ARA-381-37

- **Stiff**
- **Soft**
- **Std**
- **T-1**
- **T-2**
- **T-3**
- **T-4**
- **T-5**
- **T-6**
- **T-7**

Observation

- **Durometer**
 - 60
 - 55
 - 50
 - 45
 - 40
 - 37
 - 43

Avg Durometer by Group

ARA-381-37
Bumper Control – Status & Issues

ARA-220: I Chart of Avg Force by Part Number

Individual Value

TestDate

©2014 Humanetics Innovative Solutions Inc.
Bumper Control – Status & Issues

Avg Durometer by Group

ARA-220

- **Stiff**: 65
- **Soft**: 60
- **Std**: 55
- **T-1**: 50
- **T-2**: 45
- **T-3**: 40
- **T-4**: 35
- **T-5**: 30
- **T-6**: 25
- **T-7**: 20

Observation

Durometer

1. **37**
2. **43**
3. **37**

©2014 Humanetics Innovative Solutions Inc.
Bumper Control – Status & Issues

Plot of Avg Force Change @ 7 Months
ARA-521 Standard

SPEC_ID
L-801
L-806
L-807

SPEC_ID
L-801
L-806
L-807

©2014 Humanetics Innovative Solutions Inc.
Bumper Control – Status & Issues

Plot of Avg Force Change @ 7 Months
ARA-520 Standard

Index
Spec_ID

Plot of Avg Force Change @ 7 Months
ARA-520 Standard
Bumper Control – Status & Issues

Plot of Avg Force Change @ 7 Months
ARA-381-37

SPEC_ID
- T-809
- T-815
- T-827

Index
28-Jan-14
26-Jun-13
131.3
83
Bumper Control – Status & Issues

Plot of Avg Force Change @ 7 Months
ARA-220 Standard

SPEC_ID

Index

Avg Force

Plot of Avg Force Change @ 7 Months
ARA-220 Standard

SPEC_ID

Index

Avg Force

Plot of Avg Force Change @ 7 Months
ARA-220 Standard

SPEC_ID

Index

Avg Force
Bumper Control – Status & Issues

• Hope to have more information by next week’s meetings

• Question for group: does anyone know of a good, standard accelerated aging test for urethane?
 o What standard # (ASTM, ISO, other)?
 o Any experience?
Finishing dummies for Injury Criteria Development

- VRTC dummies, BAST dummy
- Pelvis & jacket work done
- Need to get bumpers right
- Hope to have better update on timing by next week meeting
Questions?