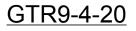

Validation of Pedestrian Lower Limb Injury Assessment using Subsystem Impactors

<u>Yukou Takahashi</u> Miwako Ikeda Iwao Imaizumi Yuji Kikuchi Satoru Takeishi Honda R&D Co., Ltd.



2012 IRCOBI Conference September 12nd, 2012 Trinity College Dublin, Ireland

- Background
- Objective
- Predictor of Tibia Fracture
- Development and Validation of Legform Models
- Correlation of Injury Measures between Human and Legform Models
- Factors for Difference in Tibia Fracture Measure Correlation
- Discussion
- Conclusions

Background

- Objective
- Predictor of Tibia Fracture
- Development and Validation of Legform Models
- Correlation of Injury Measures between Human and Legform Models
- Factors for Difference in Tibia Fracture Measure Correlation
- Discussion
- Conclusions

GTR9-4-20 Pedestrian Test Procedure EEVC

Subsystem Impactors

FlexPLI

Flexible Pedestrian Legform Impactor

Jointly developed by JARI and JAMA

Past Studies

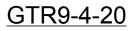
• Matsui et al. (2001)

 Comparison of time histories of impact force, knee shear displacement and knee bending angle between EEVC legform tests and PMHS tests by Kajzer et al.

✓ EEVC legform does not have sufficient biofidelity

• Konosu et al. (2009)

- Impact simulations using EEVC legform and human FE models against multiple simplified vehicle models
- No correlation between EEVC legform upper tibia acceleration and human tibia bending moment (R=0.01)


• JAMA and JARI (2009)

- Impact simulations using FlexPLI and human FE models against multiple simplified vehicle models
- ✓ Good correlation between FlexPLI tibia bending moment and human tibia bending moment (R=0.90)

Past Studies


- Validity of the use of tibia bending moment as a predictor of human tibia fracture needs further clarifications
- No comprehensive comparison has been made as to the correlation of all injury measures
- Factors for the difference in the correlation have not been clarified

Background

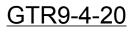
Objective

- Predictor of Tibia Fracture
- Development and Validation of Legform Models
- Correlation of Injury Measures between Human and Legform Models
- Factors for Difference in Tibia Fracture Measure Correlation
- Discussion
- Conclusions

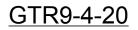
Objective

 Investigate difference of correlation with human body between EEVC legform and FlexPLI for all injury measures
 Clarify factors for difference in correlation from a viewpoint of stiffness of tibia and injury measures used

Identification of Predictor of Human Tibia Fracture


 Impact simulations using a human FE model against multiple simplified vehicle models

Correlation Analysis of Human and Legform Measures


- Impact simulations using EEVC legform and FlexPLI FE models against multiple simplified vehicle models
- Comparison of correlation for all injury measures

Clarification of factors for correlation difference

- Tibia fracture measures
- Additional simulations using simplified vehicle models and leg component model

- Background
- Objective
- Predictor of Tibia Fracture
- Development and Validation of Legform Models
- Correlation of Injury Measures between Human and Legform Models
- Factors for Difference in Tibia Fracture Measure Correlation
- Discussion
- Conclusions

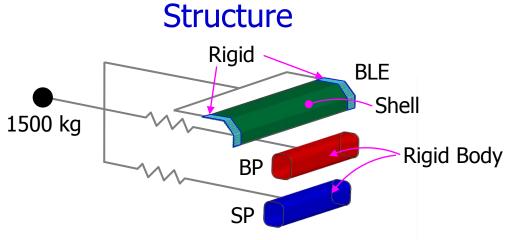
Candidate Predictors

• Shear force, tensile force, bending moment

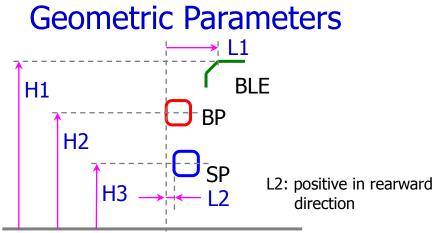
Acceleration

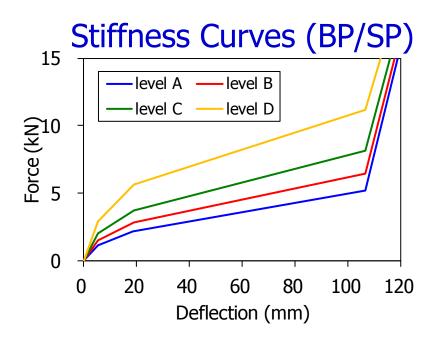
Assumption

Shear Force

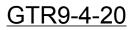

Bending Moment

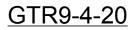
ensile Force


 Bone fails when maximum von Mises stress exceeds the limit

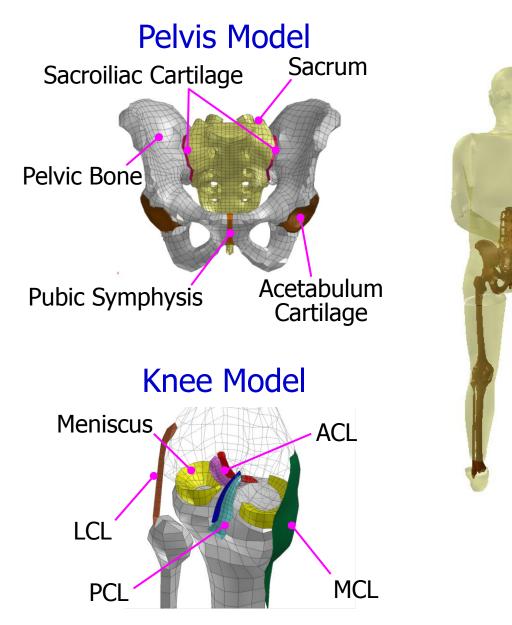

Investigate correlation between maximum von Mises stress and maximum candidate predictors

Simplified Vehicle Model


GTR9-4-20

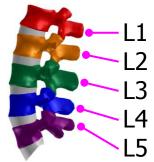

Levels of Parameters

Parameter	Unit	Level 1	Level 2	Level 3
K1 (BLE thickness)	mm	0.4	0.6	-
K2 (BP stiffness)	-	В	С	D
K3 (SP stiffness)	-	А	С	D
H1 (BLE height)	mm	650	700	750
H2 (BP height)	mm	450	490	530
H3 (SP height)	mm	250	270	350
L1 (BLE lead)	mm	125	200	275
L2 (SP lead)	mm	-20	0	30



Simplified Vehicle Model

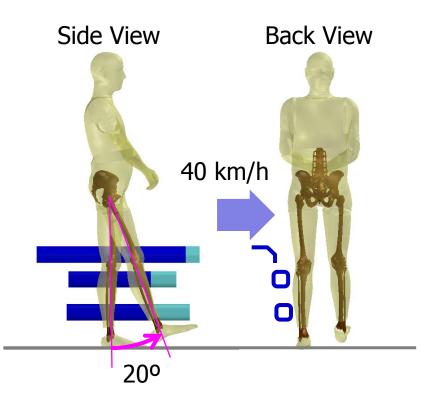
Model	K1	K2	K3	H1	H2	H3	L1	L2
S1	0.4	В	А	650	450	250	125	-20
S2	0.4	В	С	700	490	270	200	0
S3	0.4	В	D	750	530	350	275	30
S4	0.4	С	А	650	490	270	275	30
S5	0.4	С	С	700	530	350	125	-20
S6	0.4	С	D	750	450	250	200	0
S7	0.4	D	А	700	450	350	200	30
S8	0.4	D	С	750	490	250	275	-20
S9	0.4	D	D	650	530	270	125	0
S10	0.6	В	А	750	530	270	200	-20
S11	0.6	В	С	650	450	350	275	0
S12	0.6	В	D	700	490	250	125	30
S13	0.6	С	А	700	530	250	275	0
S14	0.6	С	С	750	450	270	125	30
S15	0.6	С	D	650	490	350	200	-20
S16	0.6	D	А	750	490	350	125	0
S17	0.6	D	С	650	530	250	200	30
S18	0.6	D	D	700	450	270	275	-20



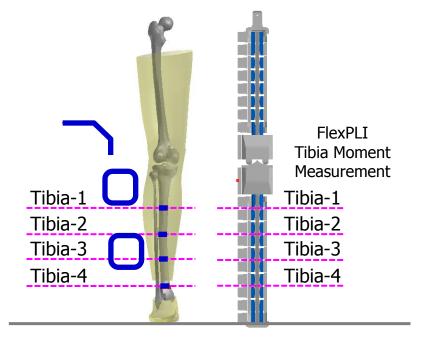
Pedestrian Model

Neck Model C1 C2 C3 C4 C5

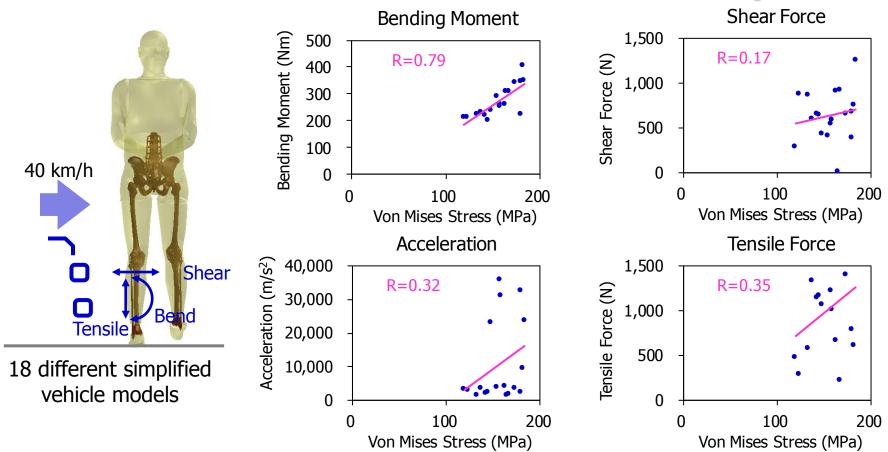
Lumber Model


Pedestrian Model Validation

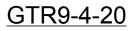
Body Region /Tissue		Loading Rate	Loading Configuration	Properties	
Pelvis	Isolated pelvis	Quasi-staticDynamic, 1 rate	-		
Thigh	Isolated femur	Quasi-staticDynamic, 1 rate	 3-point bending 	Force-deflectionMoment-deflection	
	Femur+flesh	Quasi-staticDynamic, 1 rate	 3-point bending 	Force-deflectionMoment-deflection	
Knee	Isolated ligament	Quasi-staticDynamic, 3 rates	 Tension 	 Force-deflection 	
	Isolated knee joint	 Dynamic, 1 rate 	4-point bending3-point bending	 Moment-angle 	
Leg	Isolated tibia	Quasi-staticDynamic, 1 rate	 3-point bending 	Force-deflectionMoment-deflection	
	Isolated fibula	Quasi-staticDynamic, 1 rate	 3-point bending 	Force-deflectionMoment-deflection	
	Tibia+fibula+ flesh	Quasi-staticDynamic, 1 rate	 3-point bending 	Force-deflectionMoment-deflection	
Whole body		 40 km/h impact 	 Lateral impact 1 small sedan, 1 large SUV 	 Head, T1, T8, pelvis trajectories Pelvis and lower limb injury distribution 	



Impact Simulation Setup


Model Setup

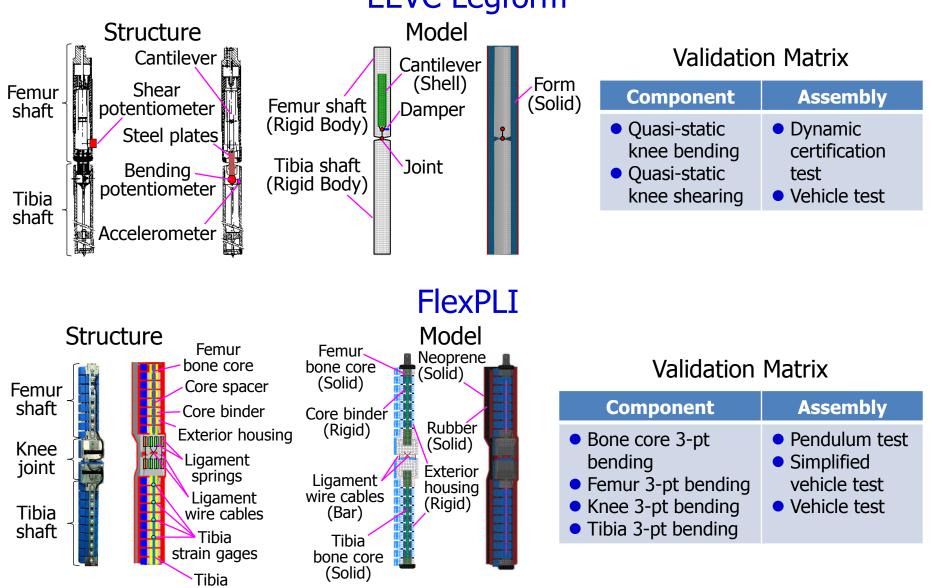
Measurement Location



Results of Correlation Analysis

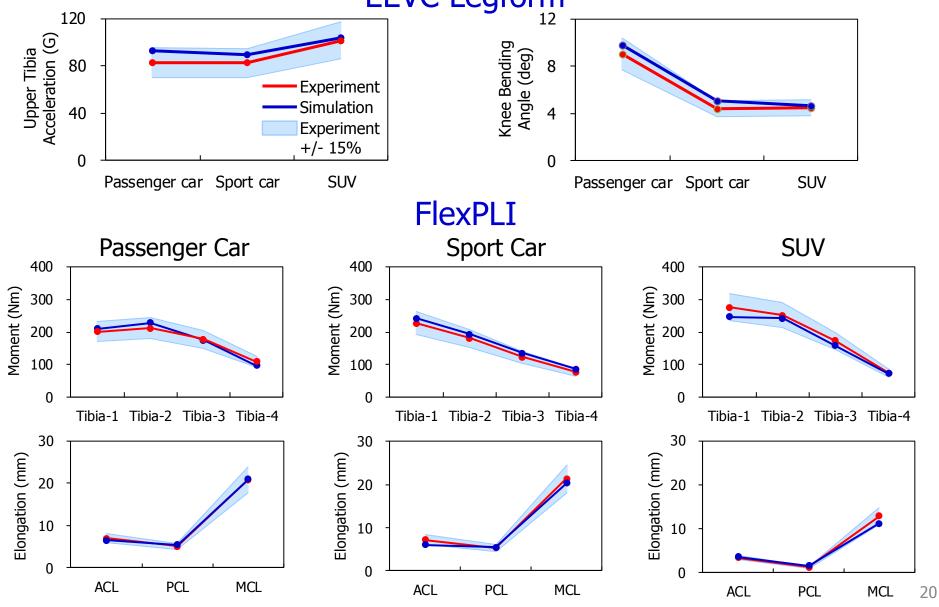
Maximum tibia bending moment best correlates with maximum local von Mises stress of tibia

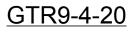
Maximum tibia acceleration poorly correlates with maximum von Mises stress of tibia


- Background
- Objective
- Predictor of Tibia Fracture
- Development and Validation of Legform Models
- Correlation of Injury Measures between Human and Legform Models
- Factors for Difference in Tibia Fracture Measure Correlation
- Discussion
- Conclusions

GTR9-4-20

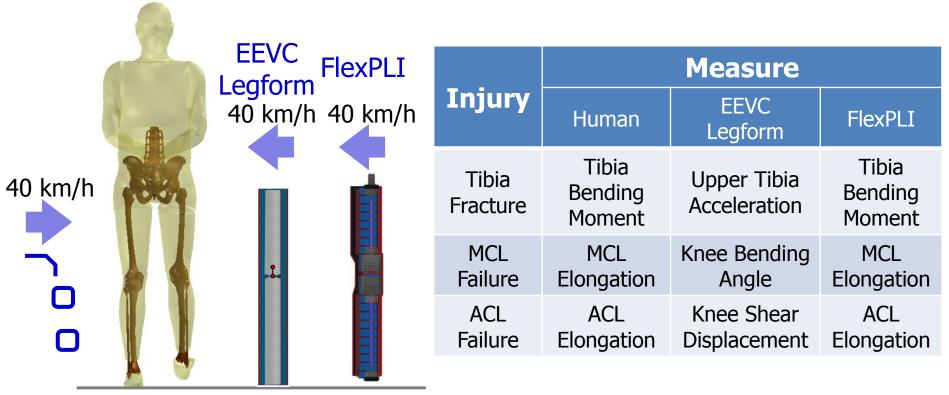
bone core


Legform Models

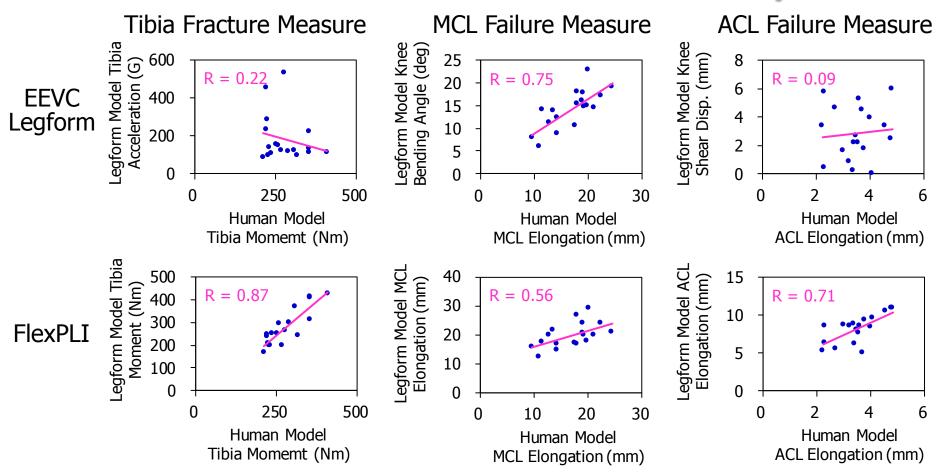

EEVC Legform

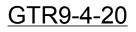
Validation against Car Test

EEVC Legform



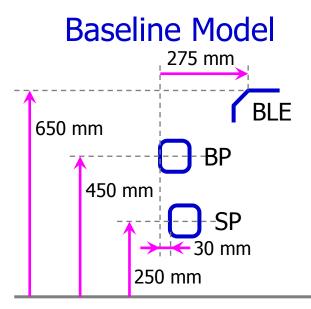
- Background
- Objective
- Predictor of Tibia Fracture
- Development and Validation of Legform Models
- Correlation of Injury Measures between Human and Legform Models
- Factors for Difference in Tibia Fracture Measure Correlation
- Discussion
- Conclusions


Impact Simulations

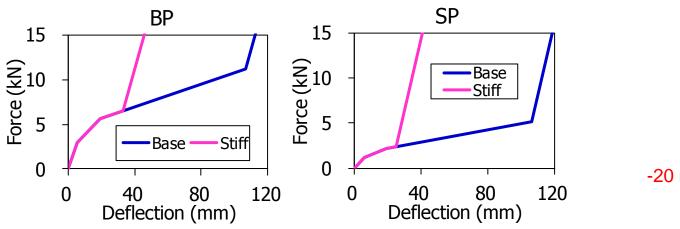

18 simplified vehicle models

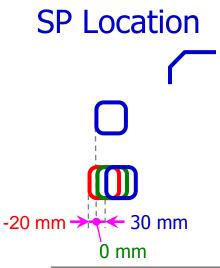
Investigate correlation of tibia and knee injury measures with human model for both EEVC legform and FlexPLI models

Results of Correlation Analysis

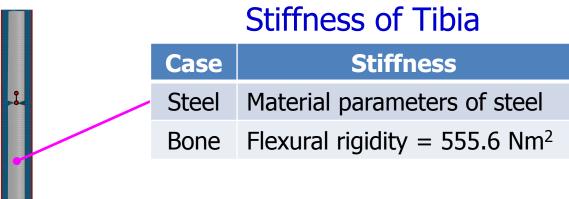


- FlexPLI showed much better correlation than EEVC legform for tibia fracture and ACL failure measures
- EEVC legform tibia fracture measure showed a negative correlation



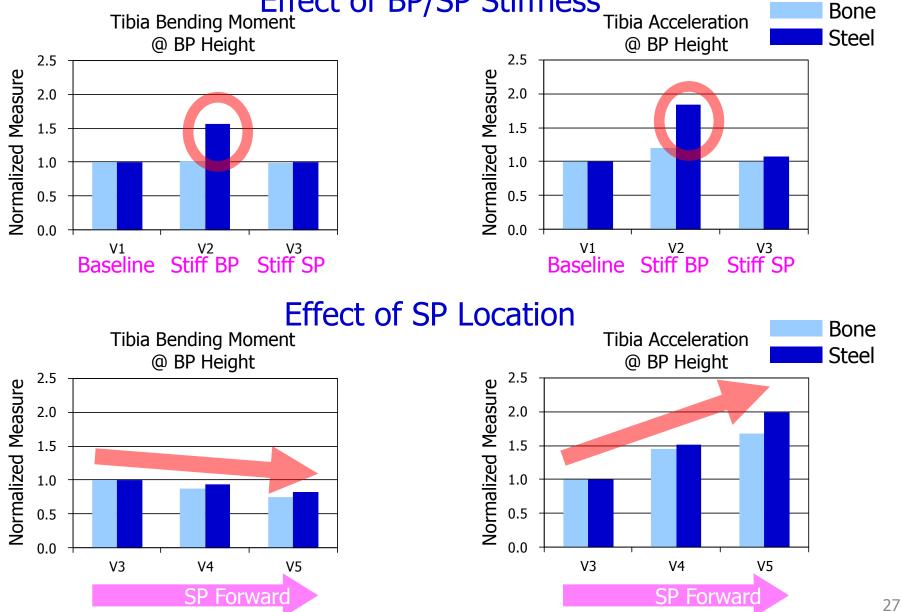

- Background
- Objective
- Predictor of Tibia Fracture
- Development and Validation of Legform Models
- Correlation of Injury Measures between Human and Legform Models
- Factors for Difference in Tibia Fracture Measure Correlation
- Discussion
- Conclusions

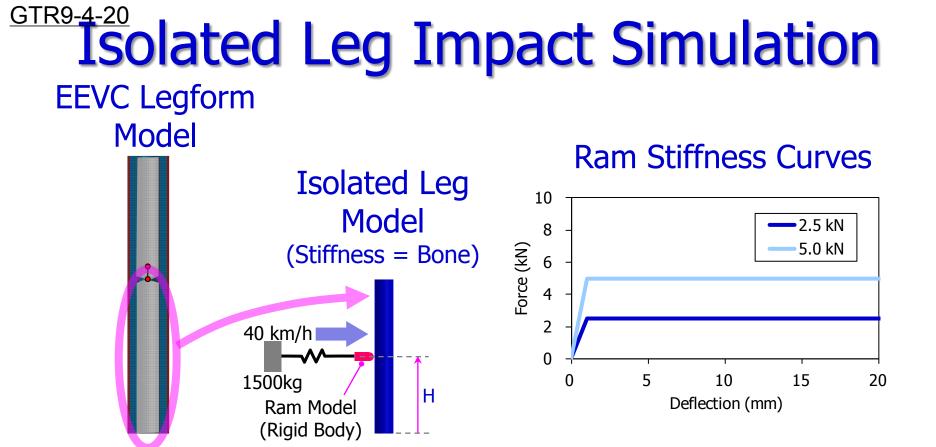
Simplified Vehicle Impact Simulation



Simplified Vehicle Impact Simulation

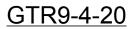
EEVC Legform Model

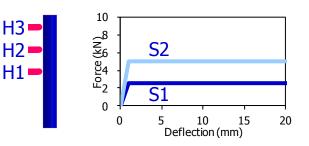

Simulation Matrix

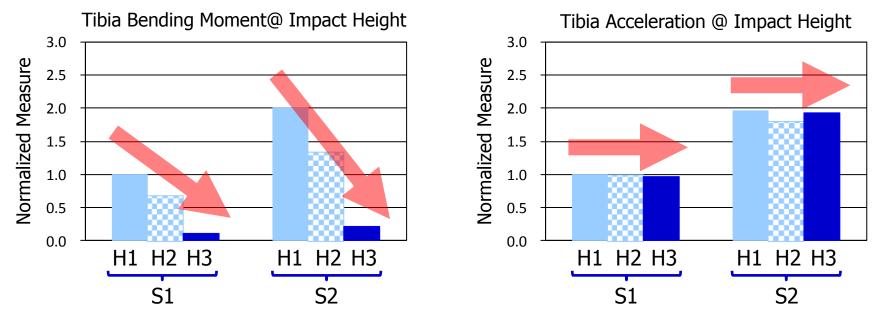

Case	9	Stiffness	5	SP Location Case –		Stiffness			SP
Case	BP	SP	Tibia	Location (L2 in mm)	Case	BP	SP	Tibia	Location (L2 in mm)
V1-B	Base	Base	Bone	30	V1-S	Base	Base	Steel	30
V2-B	Stiff	Base	Bone	30	V2-S	Stiff	Base	Steel	30
V3-B	Base	Stiff	Bone	30	V3-S	Base	Stiff	Steel	30
V4-B	Base	Stiff	Bone	0	V4-S	Base	Stiff	Steel	0
V5-B	Base	Stiff	Bone	-20	V5-S	Base	Stiff	Steel	-20

<u>GTR9-4-20</u>

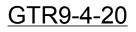
Results


Effect of BP/SP Stiffness



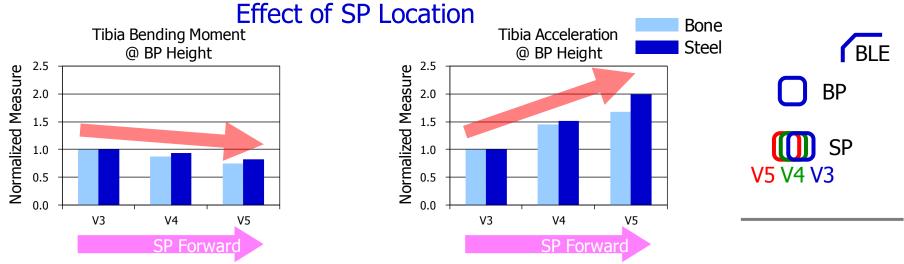

Simulation Matrix

Case	Impact Height (H in mm)	Impactor Stiffness (Force level in kN)	Case	Impact Height (H in mm)	Impactor Stiffness (Force level in kN)
H1-S1	250	2.5	H1-S2	250	5.0
H2-S1	350	2.5	H2-S2	350	5.0
H3-S1	450	2.5	H3-S2	450	5.0

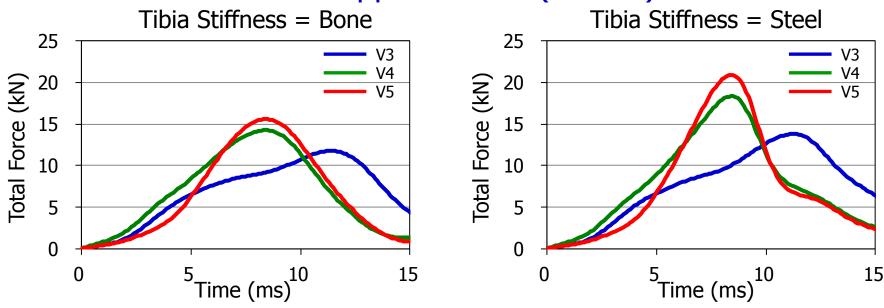

Results

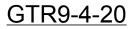
Both bending moment and acceleration are almost two times higher for S2 (5.0 kN) relative to S1 (2.5 kN)

Acceleration does not depend on impact height, while bending moment is highly dependent on impact height

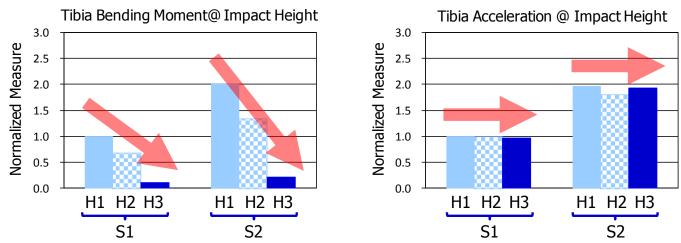

- Background
- Objective
- Predictor of Tibia Fracture
- Development and Validation of Legform Models
- Correlation of Injury Measures between Human and Legform Models
- Factors for Difference in Tibia Fracture Measure Correlation

Discussion


Conclusions

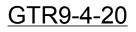

<u>GTR9-4-20</u>

Discussion



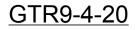
Total Applied Force (BP+SP)

Discussion

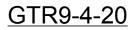

Acceleration

Solely determined by applied force magnitude

SP forward \rightarrow Increased total force \rightarrow Increased acceleration


Bending Moment

Dependent on both magnitude and location of applied force


- Background
- Objective
- Predictor of Tibia Fracture
- Development and Validation of Legform Models
- Correlation of Injury Measures between Human and Legform Models
- Factors for Difference in Tibia Fracture Measure Correlation
- Discussion

Conclusions

- Peak tibia bending moment best correlated with peak stress
- Correlation with human injury measures was found to be significantly improved for FlexPLI relative to EEVC legform for tibia fracture and ACL failure measures
- Excessive tibia stiffness resulted in higher sensitivity of tibia fracture measures to vehicle stiffness and geometric characteristics
- Tibia acceleration was found to be solely determined by applied force magnitude, while tibia bending moment depended on both magnitude and location of applied force
- Differences in tibia stiffness and tibia fracture measures resulted in significantly different trend of tibia fracture measures when vehicle geometry was changed

Thank you for your attention Questions?

The Power of Dreams