PITCH VARIATION

POLAND PROPOSAL

INPUT DATA

Calculations is taking into account:

- Empty weight of the vehicles with fuel
- Load repartition
- Maximum weight enable on front and rear axle
- Vehicle spring
- Tires deformation

2 ways of Load:

- From passengers to trunk
- Only trunk

Step 1 calculations

Load from passengers to trunk:

Loading by 25kg from the FRONT to the REAR of the vehicle

CONFIDENTIAL C PROPERTY OF GROUPE RENAULT

Step 2 calculations

Load in trunk

Loading by 25kg from the REAR to the FRONT of the vehicle

For each state of load, we measure the load and the pitch angle regarding the 1st state of load

CONFIDENTIAL C PROPERTY OF GROUPE RENAULT

Results for « Clio IV » 5 seats

Véhicule	Calculations of variation	Measures of variation (UTAC
I ₀	0%	0% (-1% réel)
I _{min}	-0,02%	0%
I _{max}	3,13%	2,85%
ΔΙ	3,16%	2,85%

Maximum weight on rear axle

Results for « Grand Scénic » 5 seats

Véhicule	Calculations of variation	Measures of variation (UTAC)
I ₀	0%	0% (-1% réel)
I _{min}	-0,04%	-0,06%
I _{max}	3,95%	3,9%
ΔΙ	3,98%	3,96%

Maximum weight on rear axle

VALUE OF LOAD 100%

Do you see this type of load every day by night?

REMINDER – GTB TESTS IN 2010

With 50% Load 18 cars tested 10 cars without glaring (< 1% pitch variation)

The 3 Renault cars tested were < 1%:

Twingo RS: +0,4% pitch variation

• Megane: +0,65% pitch variation

• Scénic : +0,65% pitch variation

CONCLUSION

Imax - Imin in Renault:

- > 3% for 'small' car (B-Segment)
- > 4% for C-segment cars
- > Pitch variation is more important than measurements presented by Poland $(\sim 2\%)$
- > According to Poland proposal, automatic levelling should be mandatory for all vehicles

CONCLUSIONS

- > Renault considers this criteria not relevant
- > Other factors are responsible for glare :
 - > People from France who drive in England without respecting « tourist mode » regulation
 - > DRL/PL by night (light above the cut off)
 - > Dirty lens (study already done to show dirty lens can glare (light deviation)
 - > High luminance due to low beam size
 - > Gradient value of the cut-off (smooth or sharp). Renault requirement is smooth
 - > ...
- ➤ Renault considers manual levelling enough to avoid glare especially because the driver can adapt the beam by himself (not possible if automatic system) → potential safety issue
 - > Especially with automatic system cars can glare (Bi-Xenon 35W example with a lot of cars in the streets).
- > Automatic levelling remain expensive (20 50€)
- > Automatic levelling system consumes between 1W-5W power consumption (equivalent to 0,1g CO₂/km)

ANNEX – Poland Proposal

Measurement results

Vehicle	Headlamp height (m)	ΔI (Imax- Imin)
1	0.74	1.6
2	0.70	0.9
3	0.64	2.1
4	0.84	1.2
5	0.82	1.4
6	0.88	1
7	0.83	1.1
8	0.68	1.7
9	0.87	1.7
10	0.67	3.3
11	0.80	2.1
12	0.74	2
13	0.89	2.3
14	0.79	1.3
15	0.66	1.7
16	0.69	2.4
17	0.75	1.6
18	0.73	2.1
19	0.72	2
20	0.70	1.6
21	0.76	2.2

ΔI MEASUREMENT PROCEDURE

$$\Delta I = I_{\text{max}} - I_{\text{min}}$$

DEVDI

31/01/17

CONFIDENTIAL ©
PROPERTY OF GROUPE RENAULT

GROUPE RENAULT

ANNEX - Pitch vs. Loading

Loading condition 50%:

- Range of pitch: 0 cm 18 cm:
 - ➤ Reason for relatively low influence on rating mean at 50%
- 6 cars are above horizontal line→ High Glare Potential

Loading condition 100%:

- 4 cars: Pitch from 21 cm 23 cm
 - → High Glare Potential

- → Assumption: The relative small difference between the two clusters 0% and 50% is caused by the high deviation of pitch at 50% loading.
- → Conclusion: Clusters had to be built based on pitch condition and independent of loading condition

ANNEX - Dirty lens

2. Literature Review

TU Darmstadt, 2016

- Same results as Sivak
 - Less light "beneath" and more above cut off line

Clean 0,2 lx ± 0,01 lx dirty 0,7 lx ± 0,01 lx + 250 %

