THERMAL PROPAGATION TEST EXPERIENCE

November 2016
OICA Submission to EVS-GTR Task Force 5
Agenda

• Objective & key messages
• Thermal propagation testing
 • Initiation methods
 • Repeatability
 • Propagation behavior
 • DUT modifications
• Additional Discussion Topics
 • Engineering standard compared to regulatory requirement
 • Current practice of one OEM
Objective

• Share vehicle manufacturer thermal runaway and thermal propagation test experience, illustrating that the currently proposed thermal propagation test method is not sufficiently mature for regulation
Key Messages

- Proposed initiation methods are not equivalent and are not repeatable
- Performance criteria are inconsistent and largely unrelated to propagation behavior
- Necessary DUT modifications are extensive and affect test outcomes
- Wide variation in allowable test parameters creates opportunity for manufacturers to select most advantageous conditions which may not reflect intended purpose of test
- Continues to be very limited evidence suggesting that this issue is a significant field concern for automobiles
Extent of Recent Test Experience – One OEM

- 126 tests conducted over past 18 months
 - Single cell (no enclosure): 63
 - 4-cell “module” (enclosure and no enclosure): 53
 - Simulated pack (enclosure): 10

- 4 Cell types
 - Two energy cells (26-60 A-hr): 46 tests
 - Two power cells (5-7 A-hr): 80 tests

- 4 Initiation Methods
 - Heating: 79 tests
 - Constant temperature increase rate (5 rates)
 - Constant power (2 rates)
 - Overcharge: 24 tests
 - Varying constant rates (C/3 to 3C)
 - Nail penetration: 21 tests
 - Varying speeds and nail sizes
 - Other potential methods: 2 tests
Thermal Propagation Testing
Initiation methods Part 1

Key message: Proposed initiation methods are not equivalent

[Expanded detail on information shared in EVSTF-08-64e.pdf]
Initiation Method Comparison
Heating vs Overcharge

• **DUT**
 - Non-production “modules”
 - **Identical** except for presence of heater
 - Four pouch cells
 - No enclosure

• **Test Methods**
 - **Heating**
 - 0.5degC/s
 - One side of end cell
 - **Overcharge**
 - 3C Rate
 - No voltage limit

Initiation methods are not equivalent
Overcharge Test Set-up

Heating Test Set-up
Thermal runaway initiated
Thermal propagation occurred

“Front” indicates side facing initiating end of module
“Back” indicates side facing non-initiating end of module
Thermal runaway initiated
No thermal propagation

“Front” indicates side facing initiating end of module
“Back” indicates side facing non-initiating end of module
Heat vs. Overcharge | t_C1_Back_Cen | Test D048 vs. Test D050
Heat vs. Overcharge | t_C2_Front_Cen | Test D048 vs. Test D050
Thermal Propagation Testing
Initiation methods Part 2

Key message: Proposed initiation methods are not repeatable

[New information not previously shared.]
Cell Heating Test Repeatability

• Test article:
 • 4-cell stack, face to face
 • 6.8 Ahr pouch cell

• Initiation method:
 • Block heater – 2.75degC/sec
Out of 6 tests run the same way:
2 propagate, 4 do not.

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Cells in Thermal Runaway</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>002</td>
<td>1</td>
</tr>
<tr>
<td>003</td>
<td>2</td>
</tr>
<tr>
<td>004</td>
<td>1</td>
</tr>
<tr>
<td>008</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>3</td>
</tr>
</tbody>
</table>
Key message: Wide variation in allowable test parameters creates opportunity for manufacturers to select most advantageous conditions which may not reflect intended purpose of test

[New information not previously shared.]
Single cell overcharge
Charge rate variation

Variation in test parameters allows manufacturers to select advantageous conditions.
Single cell overcharge summary:

<table>
<thead>
<tr>
<th>Test #</th>
<th>Rate</th>
<th>Charge time (seconds)</th>
<th>Thermal runaway?</th>
<th>Approx. %SOC (based on charge time and rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F26</td>
<td>C/3</td>
<td>11028</td>
<td>No</td>
<td>202%</td>
</tr>
<tr>
<td>F27</td>
<td>1C</td>
<td>3646</td>
<td>No</td>
<td>201%</td>
</tr>
<tr>
<td>F29</td>
<td>2C</td>
<td>1519</td>
<td>Yes</td>
<td>184%</td>
</tr>
<tr>
<td>F28</td>
<td>3C</td>
<td>920</td>
<td>Yes</td>
<td>177%</td>
</tr>
</tbody>
</table>

Significant outcome variation within allowable range.
Single cell overcharge

Dotted line indicates test that did not go into thermal runaway
Thermal Propagation Testing
Propagation behavior

Key message: Performance criteria are inconsistent and largely unrelated to propagation behavior

[Expanded detail on information shared in EVSTF-09-40-TF5-19.pdf]
Large Scale DUT Tested within bounds of Draft Regulation

• Test article:
 • Non-production battery pack configuration
 • Pouch cell in a 2p28s arrangement
 • Voltage: ~116 V
 • Nominal capacity: ~52 A-hr (2 x 26 A-hr cells in parallel)

• Initiation method:
 • Block heater – 1.6 kW, constant power
 • Overcharge – 1 C rate (less than 1 hour)

• Initiation Cell Location (see following page)
 • End of pack
 • Mid pack
Initiation Cell Locations

End of Pack
Initiation Cell Location

Mid Pack
Initiation Cell Location
Results Summary

Heating

- Flame visible for approx. 1 second
- Visible smoke

Overcharge

- Visible smoke
- Flame visible for >160 seconds
- Visible smoke

Inconsistent results
Results Summary

<table>
<thead>
<tr>
<th></th>
<th>D76 Heating – End</th>
<th>D77 Overcharge – End</th>
<th>D78 Heating – Mid</th>
<th>D79 Overcharge - Mid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to all cells vent (approx. secs)</td>
<td>2550</td>
<td>2750</td>
<td>1950</td>
<td>1700</td>
</tr>
<tr>
<td>Cell groups vented* @ 300 seconds (# cells)</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Cell groups vented* @ 600 seconds (# cells)</td>
<td>8</td>
<td>7</td>
<td>12</td>
<td>>13</td>
</tr>
<tr>
<td>Cell groups vented* @ 900 seconds (# cells)</td>
<td>12</td>
<td>10</td>
<td>14</td>
<td>Unknown</td>
</tr>
<tr>
<td>Cell groups vented* @ 1200 seconds (# cells)</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>Unknown</td>
</tr>
<tr>
<td>Cell groups vented* @ 1500 seconds (# cells)</td>
<td>16</td>
<td>16</td>
<td>19</td>
<td>Unknown</td>
</tr>
<tr>
<td>Order of voltage loss</td>
<td>Sequential (C1 to C28)</td>
<td>Sequential (C1 to C28)</td>
<td>C9, C10, C11, C12, C13, C8, C14, C7, C15, C6, C16, C5, C4, C3, C1, C17, C18, C19, C20, C21, C22, C23, C24, C25, C28, C26, C27</td>
<td>C9, C8, C10, C7, C11, C6, C5, C12, C4, C3...cannot be distinguished.</td>
</tr>
</tbody>
</table>

*Voltage loss of the cell group is assumed indicative of cell venting

Results unrelated to intended assessment
Example of influence of test set-up on results
D78 Mid pack, Heater

Insulating plate to prevent heater from initiating 2 cells.

Initial propagation direction (4 cells)

Results influenced by test method
Cell heated (w/ 1.6kW) for approx. 1134 sec

v_C2 unavailable due to data acquisition anomaly
Overcharge time (@ 1C) = approx. 3230 sec

Data acquisition anomaly in v_C1 causes apparent oscillation of voltage. Real voltage does not oscillate. V_C1 not shown on graph.
Cell heated (w/ 1.6kW) for approx. 967 sec
Thermal Propagation Testing

DUT Modifications

Key message: Necessary DUT modifications are extensive and affect test outcomes

[Information shared in EVSTF-09-40-TF5-19.pdf]
Remove cover for modification

Pack cover removed
Heating – mid-pack:
Remove bus bars
Heating – mid-pack:
Cell sensing circuit removed
Heating – mid-pack: Preparation to cut through cell connection board

Cell connection board must be cut to insert heater
Heating – mid-pack:
Cut through cell connection board

Cell connection board cut
Heating – mid-pack & end-pack: Remove cell constraint fasteners

1) Compress stack with clamps
2) Remove top “strap”
3) Remove fasteners

Cell stack unconstrained to allow heater insertion on end or mid pack.
Heating – mid-pack: Insertion of heater

Separate cell stack, remove holding frame, insert heater

Separate cell stack

Remove holding frame to fit heater

Insert heater
Heating – mid-pack & end-pack:
Modification/fabrication of parts required

- Longer fasteners required (both heater positions)
- Larger “strap” required (both heater positions)
All packs:
Thermocouple fixed to target cell

Cell stack must be expanded to include thermocouple
Overcharge – mid-pack & end-pack
Install Charging Wires to Initiation Cell

Charge wires

Install terminals for wire connection

Note: Voltage measurement wires for data collection.
(Not required part of test)
Overcharge – mid-pack & end-pack
Remove parallel cell from electrical circuit

Cell tab severed to disconnect target cell from parallel configured cell pair (a single cell tab is disconnected).
Conclusions
Conclusions

- Thermal propagation behavior depends on METHOD of initiating thermal runaway in a single cell
- Proposed allowable test method variation enable conditions which BOTH generate and do not generate thermal runaway in a single cell
- Thermal propagation appears UNCORRELATED to proposed test pass-fail criteria
- Proposed test methodology results in INCONSISTENT results
- SIGNIFICANT modification of DUT will likely be required and may affect test outcome
- Proposed thermal propagation test method is not sufficiently mature for regulation
Additional Points for Discussion

• Engineering standard compared to regulatory requirement
• How one OEM addresses thermal propagation risk
Engineering Standard vs Regulatory Requirement
Comparing Engineering Standards and Regulations

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Engineering Standard</th>
<th>Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Assist manufacturer in development of product and/or communication with suppliers</td>
<td>Assure public safety</td>
</tr>
<tr>
<td>Usage Requirement</td>
<td>Optional at manufacturer discretion</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Procedure Robustness</td>
<td>Sufficient to suit manufacturer’s needs</td>
<td>Repeatable and reproducible</td>
</tr>
<tr>
<td>DUT (including modification)</td>
<td>As determined by manufacturer</td>
<td>Must represent product as used by customer</td>
</tr>
<tr>
<td>Required technical merit</td>
<td>May be included in standard even if evidence supporting it is limited</td>
<td>Needs to be effective at assuring a product which complies is safe</td>
</tr>
<tr>
<td>Degree of detail</td>
<td>Can be vague/non-specific [manufacturer discretion]</td>
<td>Must be highly specific so minimize mis-interpretation</td>
</tr>
<tr>
<td>Acceptance criteria</td>
<td>Likely not part of standard; at manufacturer’s discretion</td>
<td>Must be specified unambiguously</td>
</tr>
</tbody>
</table>

A test suitable for an engineering standard IS NOT necessarily appropriate for regulation.
Current Practice of One OEM
Application to thermal propagation Mitigation

Safety designs at all levels contribute to total system safety

- Stable chemistry selected
- Cell performance evaluated
- Propagation potential assessed
- System / vehicle effects evaluated
Cell performance evaluated

• Cell abuse tests have been used to assess performance to various simulated failure modes

• Selected methods simulate, to some degree, failure mode of interest
 • External short circuit
 + Simulates high current event through current collectors
 - Current density low at electrodes
 • Nail penetration
 + Electrode to electrode shorting possible
 - More distributed heating than internal short
 • Crush
 + Electrode to electrode shorting possible
 - Robust mechanical design may prevent internal short
Cell test results example

- Maximum cell temperature
- Nail Penetration
- External Short Circuit
- Crush
Propagation potential assessed

• Of the three tests considered, the highest thermal energy was released in the test with maximum peak temperature since all cell tests were conducted in similar environments.

• Reproduce similar thermal energy event while cell in module
 • Observe for event propagation
 • Number of cells
 • Observe for type of thermal outcome
 • Benign temperature increase
 • Venting
 • Fire
Thermal propagation assessment method

Test method example only. The illustrated test is NOT applicable for other REESS designs. Each module/pack design requires a unique test configuration or method. Such a method is not possible for ALL REESS designs.
Thermal propagation assessment example
System / vehicle effects evaluated

• Does amount of vent gas exceed allowable levels?

• Was fire / flame observed?

• Other system level effects noted?