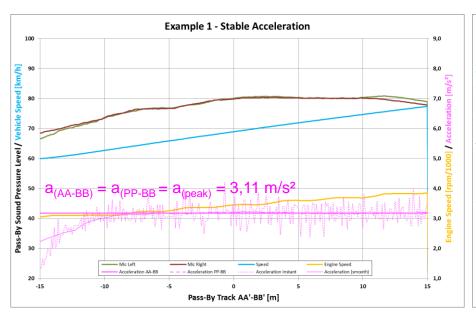
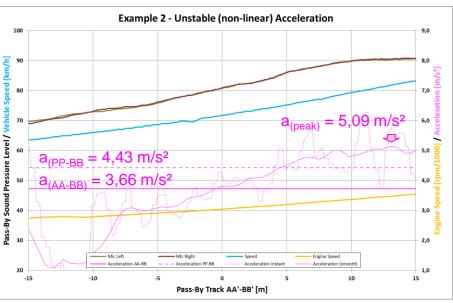
PRESENTATION OF

INTERNATIONAL ORGANIZATION OF MOTOR VEHICLE MANUFACTURERS

Stable Acceleration in ASEP Review GRB Data 2007 and Recent OICA Data


Objective


- Working Document GRB/2017/02 suggests to introduce a definition for stable acceleration so that the acceleration does not change too much within the test area.
 - "2.26. Stable acceleration
 - > 2.26.1. "Stable acceleration" is given when the acceleration from line AA' to PP' has a low variation to the acceleration from line PP' to BB'."
- ➤ This definition is necessary, because the acceleration is an important parameter of ASEP and indicates the performance of the vehicle during the test.
 - The reported sound level should correlate with the determined acceleration.
 - It can happen that even with pre-acceleration, the acceleration is low in the first part of the test track and reaches a much higher values in the second half of the test track, where the sound maximum is located.
- The current wording is not satisfying, as "low variation" has no practical meaning.
 OICA was requested to make a proposal how much this variation could be considered as normal.
- OICA has reviewed the database from GRB from 2007 an enhanced it with 30 new dataset (only vehicle speed), coming from OICA members.

Page 2 February 2017

Example for stable Acceleration

- For example 1, all accelerations have roughly the same value of approx. 3,1 m/s²
- For example 2, the accelerations strongly depend, how they have been calculated.
 - The ratio $a_{(peak)} / a_{(PP'-BB')}$ for example 2 is 1,39; the impact on the overall test result for this particular example is 2,0 dB mismatch (explanation later).
 - The maximum acceleration, taken at the point of the maximum sound level is even higher compared to a_(PP'-BB')

Page 3 February 2017

Analysis Strategy

➤ All speed data for 2nd and 3rd gear in the database have been analysis.

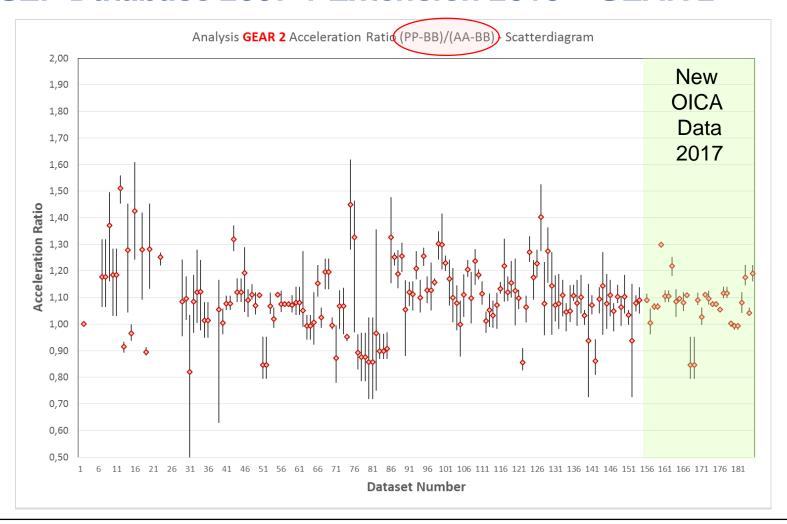
				Vehicle	Key Data	ı							Gea	r 2 -	Spee	d Va	а							Gear	2 -	Spee	d Vpp)						Gea	r 2 -	Spee	d Vbl	o		
Datei	Vehicle Code	Р	PMR	s	Lveh	Nwoti	Gear i	Lwot_i	L_urban	1	2	3	4	5	6	7	8	9	10)	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
1-48a	0048	184	106,7	6300	4	2773	3	74,4	70	25,5	29,2	33,5	35,0	40,1	43,2	48,3	55,9	61,	4 67,	7	36,7	39,7	43,3	44,2	48,9	51,7	56,1	63,0	67,9	73,6	52,8	54,	7 57,8	57,4	61,4	4 63,7	67,3	73,0	77,1	82,1
1-49	0049	184	112,1	6200	4	2250	4	72,5	72	38,9	29,7	43,1	54,3	23,0	26,6	5					49,4	42,0	52,2	62,2	37,1	33,8					61,0	55,	1 63,0	71,9	51,2	2 49,2	2			
1-50	0050	125	77,5	6000	4	2150	4	70,3	70	27,0	29,2	35,5	38,9	43,7	46,7	50,	7 54,5	59,	4 61,	4	39,5	41,0	45,8	48,6	52,3	54,5	57,5	62,0	65,2	67,0	52,4	53,	57,3	59,3	62,8	64,3	66,8	70,3	72,6	74,2
1-50a	0050	125	77,5	6000	4	3304	3	73,6	70	27,0	29,2	35,5	38,9	43,7	46,7	50,	7 54,5	59,	4 61,	4	39,5	41,0	45,8	48,6	52,3	54,5	57,5	62,0	65,2	67,0	52,4	53,	57,3	59,3	62,8	64,3	66,8	70,3	72,6	74,2
1-51	0051	40	40,0	4000	3	2228	3	69,3	68	20,2	20,3	29,3	30,1	38,7	7 39,5	48,5	49,0	58,	3 59,	9	30,0	30,2	38,0	38,8	45,7	46,5	53,9	54,6	62,3	63,7	42,2	42,	48,1	49,0	54,0	54,5	59,6	60,4	66,5	67,8
1-52	0052	125	68,4	4000	5	2211	3	71,8	71	20,6	20,7	29,2	29,7	38,8	38,8	48,	7 49,3	56,	3 58,	7	31,2	30,5	38,3	38,8	46,1	46,1	54,3	54,2	60,0	62,6	48,	47,	7 52,9	53,4	58,4	4 58,3	63,7	63,6	67,9	70,2
1-53	0053	155	90,5	6000	5	2632	3	73,0	71	19,0	20,2	30,3	31,1	39,1	1 39,2	48,4	49,6	59,	1 60,	5	31,5	32,9	40,2	41,0	47,3	47,4	55,8	57,3	65,3	66,7	45,7	46,	7 52,3	53,2	58,6	5 58,6	65,2	66,8	73,5	75,0
1-54	0054	128	95,4	6000	4	2788	3	71,9	70	22,6	20,8	29,2	30,2	39,0	39,4	47,0	49,8	49,	2 58,	6	32,4	30,8	37,1	38,8	45,5	46,9	52,1	55,0	53,7	62,5	47,3	46,	4 51,8	52,5	57,4	4 58,8	62,7	65,5	63,9	71,9
1-54a	0094	128	101,0	6000	4	2788	3	71,9	70	20,8	22,6	29,2	30,2	39,0	39,4	47,0	49,2	49,	8 58,	6	30,8	32,4	37,1	38,8	45,5	46,9	52,1	53,7	55,0	62,5	46,4	47,	3 51,8	52,5	57,4	4 58,8	62,7	63,9	65,5	71,9
1-55	1013	90	61,4	5000	5	2050	4	70,5	70	27,7	32,5	35,2	38,6	42,0	47,4	50,3	55,6	58,	9 63,	3	39,0	42,4	44,4	46,9	49,7	54,2	56,5	61,1	63,9	67,6	50,7	53,	3 55,0	57,0	58,9	62,7	64,5	68,1	70,5	73,8
2-01	0001	40	45,2	4000	3	2182	3	71,8	71	19,8	20,3	28,3	28,6	38,0	39,0	48,2	48,3	57,	0 58,	2	31,4	31,4	38,1	38,1	46,1	46,9	54,3	54,3	61,5	62,5	41,8	41,	3 46,5	46,9	52,6	5 53,3	59,1	59,0	64,9	65,7
2-02	0002	150	98,8	5000	5	2718	3	71,3	71	26,7	36,2	43,0	55,6								36,5	44,4	52,8	62,2							50,7	57,	5 64,1	71,9	9					
2-03	0003	150	98,8	5000	5	2729	3	70,9	70	27,0	36,6	45,2	57,1								36,1	44,4	53,1	64,6							49,2	57,	64,2	73,5	5					
2-04	0004	80	49,8	5500	6	3601	3	76,3	75	17,0	27,7	36,0	46,7								28,2	36,1	42,3	51,3							38,8	44,	8 49,9	57,2						
2-05	0005	80	59,3	5800	4	3355	3	72,2	72	24,6	35,9										29,6	36,4									41,4	45,	3							

Vehicle Key Data										Gear 3 - Speed Vaa												Ge	ar 3 -	Spe	ed Vp	p			Gear 3 - Speed Vbb										
Datei	Vehicle Code	P	PMR	s	Lveh	Nwoti	Gear i	Lwot_i	L_urban	1	2	3	4	5	6	7	8	9	10	1	2	3	4	1 5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
1-48a	0048	184	106,7	6300	4	2773	3	74,4	70	28,1	35,0	42,2	50,0	54,4	56,6	6 57,7	7 60,6	65,0	68,6	35,7	42,	2 49,	3 56	,1 60,	0 61,	62,	65,6	69,7	73,0	46,7	52,3	59,4	64,7	68,0	69,4	70,3	72,7	76,6	79,2
1-49	0049	184	112,1	6200	4	2250	4	72,5	72	34,5	27,9	20,1	52,0	44,7	70,4	4 62,5	47,3	3 55,9	9	42,9	37,	1 31,	0 58	3,3 52,	1 75,	1 67,	54,0	61,7		53,2	48,3	3 43,4	66,2	61,2	81,2	74,8	62,5	69,1	
1-50	0050	125	77,5	6000	4	2150	4	70,3	70	27,8	36,0	41,6	45,4	50,1	54,8	8 59,1	65,2	2 71,9	5	35,4	43,0	0 48,	1 51	,3 55,	5 59,	62,	68,	7 74,8	:	46,1	51,5	5 56,4	59,1	62,6	65,9	68,4	74,2	79,6	
1-50a	0050	125	77,5	6000	4	3304	3	73,6	70	27,8	36,0	41,6	45,4	50,1	54,8	8 59,1	1 65,2	2 71,9	5	35,4	43,0	0 48,	1 51	,3 55,	5 59,	5 62,	68,	7 74,8	1	46,1	51,5	5 56,4	59,1	62,6	65,9	68,4	74,2	79,6	
1-51	0051	40	40,0	4000	3	2228	3	69,3	68	29,8	29,9	38,6	38,6	48,8	49,	5 58,0	58,	7 67,	71,3	34,2	34,	3 42,	6 42	,5 52,	1 52,	7 61,	61,9	69,8	73,1	40,4	40,4	4 48,5	48,3	57,3	57,8	65,7	65,9	73,6	76,3
1-52	0052	125	68,4	4000	5	2211	3	71,8	71	30,0	30,8	39,8	40,0	47,9	48,	8 58,1	1 58,:	1 58,6	68,2	34,5	34,9	9 43,	7 43	,8 51,	8 53,	61,	61,2	2 61,5	71,2	43,2	44,0	52,9	53,2	59,9	60,8	67,8	67,8	68,1	76,3
1-53	0053	155	90,5	6000	5	2632	3	73,0	71	29,6	30,7	38,8	40,3	48,7	51,0	0 58,1	1 58,2	2 68,4	1 70,9	36,1	37,	1 44,	6 45	,7 53,	4 55,	7 62,	62,4	4 71,7	74,2	45,0	45,7	7 52,3	53,1	59,8	62,2	67,6	68,3	77,2	79,2
1-54	0054	128	95,4	6000	4	2788	3	71,9	70	29,9	30,3	39,7	39,8	50,0	50,6	6 58,5	60,0	69,3	70,1	35,6	36,0	0 43,	9 44	,8 54,	1 54,	5 61,	7 63,4	72,1	72,6	45,0	45,8	53,0	54,1	62,9	62,4	68,7	70,8	78,4	78,4
1-54a	0094	128	101,0	6000	4	2788	3	71,9	70	29,9	30,3	39,7	39,8	50,0	50,6	6 58,5	60,0	0 69,3	70,1	35,6	36,0	0 43,	9 44	,8 54,	1 54,	61,	7 63,4	1 72,1	72,6	45,0	45,8	53,0	54,1	62,9	62,4	68,7	70,8	78,4	78,4
1-55	1013	90	61,4	5000	5	2050	4	70,5	70	28,3	32,3	38,4	44,6	48,1	53,	2 57,9	63,9	9 67,8	3	35,0	39,0	0 44,	5 50),1 53,	0 57,	4 61,	67,3	3 71,1		44,8	47,8	52,1	56,9	59,5	63,0	67,2	72,1	75,7	
2-01	0001	40	45,2	4000	3	2182	3	71,8	71	30,6	39,6	48,1	58,9	68,9	76,5	9 88,6	5			35,7	44,0	0 51,	7 62	,7 71,	5 79,	7 89,	7			41,7	49,1	1 56,0	65,8	74,6	81,9	91,6			
2-02	0002	150	98,8	5000	5	2718	3	71,3	71	34,5	45,3	56,3	66,5							42,0	49,0	6 59,	9 70),3						49,9	56,4	4 66,9	77,0						
2-03	0003	150	98,8	5000	5	2729	3	70,9	70	36,2	48,2	57,0	64,4							41,4	53,	3 60,	8 67	,8						48,6	60,5	67,6	74,3						
2-04	0004	80	49,8	5500	6	3601	3	76,3	75	35,5	48,1	54,2	61,1							40,6	51,5	5 57,	6 63	,9						46,4	56,2	2 61,8	67,4						
2-05	0005	80	59,3	5800	4	3355	3	72,2	72	44,3	54,3	62,6	69,7	74,2	82,6	6				46,5	56,0	0 63,	2 70),4 74,	5 83,	2				51,6	60,3	66,5	72,0	76,0	83,1				

Page 4 February 2017

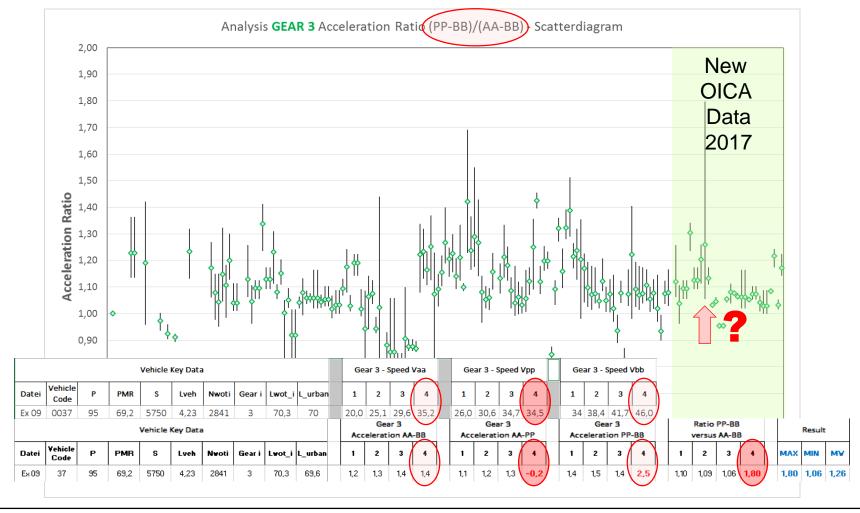
Analysis Strategy

- For each vehicle the accelerations $a_{(AA-BB)}$, $a_{(AA-PP)}$ and $a_{(PP-BB)}$ were calculated by using the speeds $v_{AA'}$, $v_{PP'}$ and $v_{BB'}$, together with the vehicle length.
- \triangleright For some vehicle the speed v_{PP} , was not available. These data were skipped.


Vehicle Key Data									Gear 2 - Acceleration AA-BB											Gear 2 - Acceleration AA-PP												Gear 2 - Acceleration PP-BB									
Datei	Vehicle Code	Р	PMR	S	Lveh	Nwoti	Gear i	Lwot_i	L_urban		1	2	3	4	5	6	7	8	9	10		1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
2-06	0006	80	52,6	4000	4	4105	100	75,1	74		2,9	2,2	1,9	1,7	1,6	1,7	1,3	1,0	1,0			3,0	1,4	0,9	0,7	0,5	0,7	0,6	0,4	0,6		2,8	2,7	2,6	2,5	2,3	2,3	1,8	1,4	1,3	
2-07	0007	90	78,3	6500	4	3005	3	71,8	71		2,1	2,1	2,2	2,4	2,4	2,4	2,4	2,3	2,5			2,2	2,3	2,3	2,7	2,9	2,8	2,8	2,6	3,0		2,1	1,9	2,1	2,1	2,0	2,1	2,1	2,1	2,1	
3-01	0001	51	36,6	4600	5	2527	3	72,1	72		1,3	1,4	1,4	1,4	1,2	1,2	1,1	1,2	1,1	1,1		1,6	1,7	1,7	1,6	1,6	1,3	1,3	1,4	1,3	1,2	1,1	1,2	1,2	1,2	1,0	1,2	0,9	1,0	0,9	1,0
3-01c	0001	51	36,6	4600	5	4231	2	78,3	72		1,3	1,4	1,4	1,4	1,2	1,2	1,1	1,2	1,1	1,1		1,6	1,7	1,7	1,6	1,6	1,3	1,3	1,4	1,3	1,2	1,1	1,2	1,2	1,2	1,0	1,2	0,9	1,0	0,9	1,0
3-02	0002	110	52,2	3800	6	1969	4	74,0	73		0,9	1,2	1,5	1,8	1,7	1,6	1,5	1,6	1,5	1,4		1,0	1,3	1,4	2,2	2,4	2,0	1,9	2,0	2,2	1,7	0,8	1,2	1,5	1,5	1,3	1,3	1,3	1,4	1,1	1,2
3-02c	0002	110	52,2	3800	6	2911	2	77,8	74		0,9	1,2	1,5	1,8	1,7	1,6	1,5	1,6	1,5	1,4		1,0	1,3	1,4	2,2	2,4	2,0	1,9	2,0	2,2	1,7	0,8	1,2	1,5	1,5	1,3	1,3	1,3	1,4	1,1	1,2
3-03	0003	70	47,9	6000	4	3432	2	69,2	68		2,0	1,7	1,5	1,3	0,9	0,9	1,1	1,2	1,0	1,2		2,1	1,9	1,5	1,1	0,4	0,8	1,3	1,3	1,4	1,6	1,9	1,5	1,4	1,4	1,2	1,0	1,0	1,0	0,8	0,9
3-04	0004	81	65,1	6000	5	2634	3	73,4	73		1,8	1,8	1,8	1,8	1,8	1,7	1,8	2,0	2,0	1,9		1,9	2,0	2,0	2,1	2,1	2,0	2,1	2,3	2,3	2,3	1,8	1,7	1,6	1,6	1,7	1,5	1,6	1,7	1,7	1,7
3-04c	0004	81	65,1	6000	5	4030	2	83,5	75		1,8	1,8	1,8	1,8	1,8	1,7	1,8	2,0	2,0	1,9		1,9	2,0	2,0	2,1	2,1	2,0	2,1	2,3	2,3	2,3	1,8	1,7	1,6	1,6	1,7	1,5	1,6	1,7	1,7	1,7
3-05	0005	92	59,4	6000	5	2676	3	71,8	72		1,6	1,5	1,6	1,7	1,7	1,7	1,8	1,9	1,8	1,8		1,6	1,6	1,8	1,9	1,9	2,0	2,0	2,2	2,1	2,1	1,5	1,5	1,5	1,5	1,5	1,5	1,6	1,6	1,6	1,6
99-02	0002	81	62,5	4150	4	3641	2	74,3	71		2,3	2,4	2,3	2,4	1,7	1,8	1,8	1,7	1,7	1,8		1,7	1,8	1,6	1,8	0,6	0,8	0,8	0,7	0,7	0,6	2,7	2,7	2,7	2,8	2,6	2,5	2,5	2,5	2,5	2,6
99-03	0003	55	51,6	4000	4	2294	3	69,2	69		2,1	2,3	2,2	2,4	2,3	2,3	2,3	2,3	2,2	2,1		1,3	1,6	1,4	1,6	1,4	1,5	1,5	1,6	1,4	1,4	2,7	2,9	2,8	2,9	2,9	2,9	2,9	2,8	2,7	2,7
99-04	0004	43	43,9	5600	4	4407	2	70,7	69		1,4	1,4	1,4	1,3	1,4	1,4	1,3	1,3	1,4	1,3		1,1	1,1	1,0	0,9	1,0	1,2	0,8	0,9	1,1	0,9	1,6	1,6	1,6	1,6	1,7	1,6	1,7	1,6	1,6	1,6
99-05	0005	96	62,1	3800	5	2188	3	70,2	69		2,7	2,7	2,7	2,2	2,4	2,6	2,4	2,5	2,6	2,6		1,6	1,6	1,6	1,5	1,4	1,9	1,4	1,4	1,7	1,8	3,4	3,4	3,4	2,6	3,1	3,1	3,1	3,3	3,2	3,2

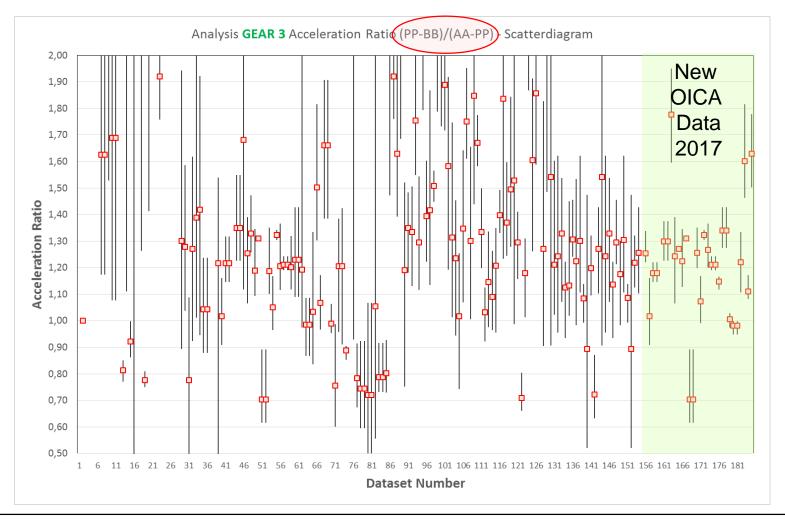
- > It is important to keep in mind, these accelerations address different engine speed area.
 - Some acceleration refer to low speeds, others to higher speed.
 - Consequently there is always a minimum variation, born by the fact, that the torque build-up speed is different from run-to-run.

Page 5 February 2017


ASEP Database 2007 + Extension 2016 – GEAR 2

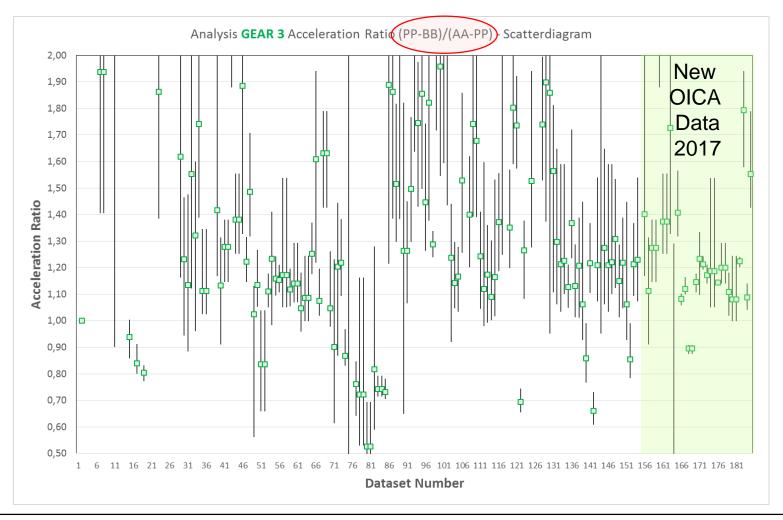
Page 6 February 2017

ASEP Database 2007 + Extension 2016 - GEAR 3



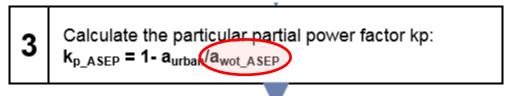
Page 7 February 2017

OICA MANUFACTURERS


ASEP Database 2007 + Extension 2016 – GEAR 2

Page 8 February 2017

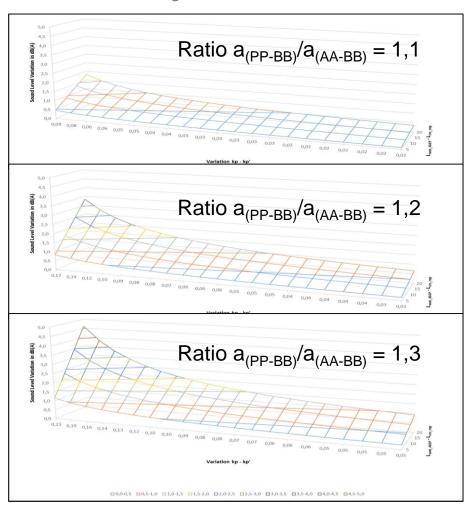
ASEP Database 2007 + Extension 2016 - GEAR 3



Page 9 February 2017

Uncertainty Estimation for Un-Stable Acceleration

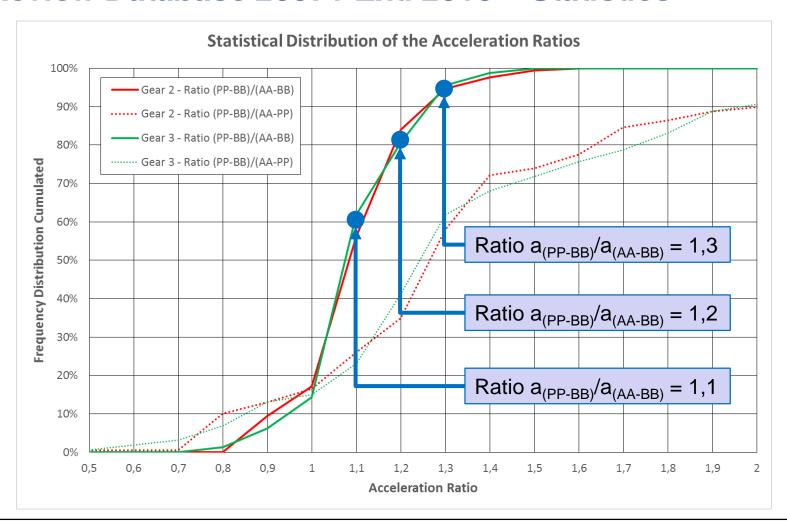
- The acceleration ratios between a(PP-BB)/(AA-PP)) show too big scatter and are not suitable for a stable acceleration definition. A potential mal-measurement is exponentially rated.
- \rightarrow The acceleration ratio between $a_{(PP-BB)}$ / $a_{(AA-BB)}$ is much more stable.
- Impact on Slope-Assessment:
 - For the slope assessment, the variation in acceleration does not play a role.
- ➤ Impact on L_{urban}-Assessment:
 - ➤ The calculated/reported acceleration is part of Pseudo-L_{urban} calculation.


Calculate the Pseudo L_urban:

PL_urban = Lwot_ASEP - kp_ASEP * Lwot_ASEP - Lcrs_rep)

Page 10 February 2017

Uncertainty Assessment - Variation of the Acceleration



- ➤ The influence on the test result is higher, if the acceleration is closer to a_{urban}. The impact is 1,0 dB to 4,5 dB on the test result.
 - This is the typical area for gear 2 of vehicles with lower PMR and higher gears for all vehicles
- Extreme high accelerations (a_{wot_ASEP} > 3 m/s²) are less affected by the variation of the acceleration. The impact is 0,5 dB to 1,5 dB on the test result
 - This is the typical area for gear 2 and sometime gear 3 of vehicles with high PMR.
- For a better precision, the ratio should be lower.

Page 11 February 2017

Review Database 2007+ Ext. 2016 – Statistics

Page 12 February 2017

Proposal

OICA suggests to adopt the following proposal:

"2.26. Stable acceleration

- 2.26.1. "Stable acceleration" is given when the acceleration from line AA' to PP' has a low variation to the acceleration from line PP' to BB'.
- 2.26.1. "Stable acceleration" is given when the acceleration ratio $a_{(PP'-BB')}/a_{(AA'-BB')}$ is lower than 1,2."
- This proposal makes the trade-off between accuracy and frequency of application.
- Alternatively, it could be considered, to calculate in general the acceleration from the second half of the test track for all ASEP measurements.
- It is more accurate to determine the instantaneous acceleration at the point where the maximum sound level occurs.
- However, latter suggestion will need more consideration on mandatory test equipment.

Page 13 February 2017