

Detecting Range to the Rear by ACSF system of Category C

Korea Automobile Testing & Research Institute

A detecting range to the rear by ACSF Cat. C based on TTC

$$S rear(m) = (TTC \times Vsd) + Smin$$

where:

TTC(sec) = time to collision

Vsd = Speed Difference = Vsmax - Vsmin

Vsmax = the maximum speed up to which an ACSF is designed to operate

Vsmin = the minimum speed down to which an ACSF is designed to operate

Smin(m)= The length of main view mirror(=device) ~ the trailing edge of

ACSF vehicle

A detecting range to the rear by ACSF Cat. C based on TTC

<Option A>

$$S \operatorname{rear}(m) = (3.5 \times Vsd) + Smin$$

<Option B>

$$S \operatorname{rear}(m) = (2.5 \times Vsd) + Smin$$

Factor background for the formula to the rear detecting(1)

$$S rear(m) = (TTC \times Vsd) + Smin$$

where:

- TTC(sec) = 3.5* or 2.5**
- * TTC of the highest performance(Type C) of types by target vehicle closing speed classification
- ** a half completed time of L.C as we are agreed(ACSF-11-03-Rev.2 para. 5.6.4.1.6), whatever is lower
 - M1, N1 : 5sec, M2, M3, N2, N2 : 10sec

Table 3 — Closing vehicle warning time to collision by target vehicle closing speed classification

Туре	Maximum target vehicle closing speed for full performance	Time to collision
	m/s	s
А	10	2,5
В	15	3,0
С	20	3,5

[ISO 17387 Lane change decision aid systems(LCDAS)-Performance Requirement and test procedures]

Factor background for the formula to the rear detecting(2)

- Vsd(=Vsmax Vsmin): speed range specified by the vehicle manufacturer of Cat. C. That is, the monitoring range should also be increased if operating speed range increases
- > Smin(m)= The length of main view mirror(=device) ~ the trailing edge of ACSF vehicle.

Calculation example

- TTC = 3.5/2.5sec, Vsd = 70km/h(operating speed range)
- **☞** Condition
- * In case of Germany, the recommended max. speed limit = 130km/h, the min. speed limit = 60km/h on highway
- ** if the length of Main view mirror \sim the trailing edge of ACSF vehicle : M1 = 3.2m(Chrysler 300c), N3 = 10.8m(Volvo FM cargo), Smin(m) = 3.2m(M1), 10.8m(N3)

Detecting Range(m) by Speed difference(operating range)

A detecting range to the rear by ACSF Cat. C based on TTC?

Option A? Option B?