Proposal for UN Regulation on AEBS for M1/N1

MLIT, Japan

Contents

1. Background
2. Proposal
3. Next Step

Contents

1. Background
2. Proposal
3. Next Step

Progress on harmonization of AEBS under WP. 29

Sep. 2008, GRRF

First proposal for a new UN Regulation on AEBS Initial Scope: M2, N2, M3, N3 (Future target: M1, N1)

July 2013

Entry into force of UNR131(AEBS) 00 series and 01 series Scope 00series: N2 above 8 tons, M3, N3 01series: M2, N2, M3, N3

Spread of technology on AEBS for passenger vehicles

Source: [Upper-left]Fuji Heavy Industries Ltd. Homepage, [Upper-right]Volvo Car Japan Co., Ltd. homepage [Lower-right]Toyota Motor Corporation homepage, [Lower-right]Mercedes-Benz Japan Co., Ltd. homepage

Japan Motor Vehicle Safety Policy (from FY2016 to FY2020)
To prevent accidents arising from human errors by utilizing advanced safety technology, e.g. AEBS

EU Draft amendment General Safety Regulation (for CARS2020) To make AEBS mandate for M1 and N1 categories to avoid collisions with vehicles(moving obstacle by 2020, stationary obstacle by 2022) and pedestrians(by 2024)

USA Commitment on Automatic Emergency Braking
To make AEB a standard feature on light duty vehicles and trucks 8,500 lbs. GVWR or less no later than 2022 voluntarily by twenty automakers representing more than 99% of the U.S. market

CPs' roadmaps of NCAP on AEBS for passenger vehicles

Japan JNCAP 2016 Roadmap
2014 moving/stationary obstacle 2016 pedestrian detection

EU Euro NCAP 2020 Roadmap (March 2015) 2014 moving/stationary obstacle 2016 pedestrian detection

USA Federal Register (November 5, 2015)
2018 moving/stationary obstacle
(By IIHS 2013 moving/stationary obstacle)

Road traffic accidents in Japan (2015)

Accidents

Fatal accidents

Source: 2015 Road traffic accident statics (ITARDA)
\square M1 N1 Truck(N other than N1) Motor cycle(L1~L5)

Accidents of M1/N1

Fatal accidents of M1/N1

[^0]
Effectiveness for Moving/stationary obstacle

Number of M1/N1 accidents of Rear-end collision per 1,000 vehicles decrease by 70%.

Non-compliant with AEBS

Equipped with AEBS*

0.5

*AEBS designed for avoiding Rear-end collision of Vehicle to Vehicle
Only reference

Effectiveness for Pedestrian

Number of M1/N1 accidents of Vehicle to Pedestrian per 1,000 vehicles decrease by 33%.
0.24 (cases/thousand)

Non-compliant with AEBS

Equipped with AEBS*

70\% OFF

*AEBS designed for avoiding Rear-end collision of Vehicle to Vehicle
Source: Created from data of 2016 Vehicle Safety Measure Study Committee, Japan
Vehicle non-compliant with AEBS (55.6 million units, Rear-end collision: 96,755 accidents, 43 fatalities, VtoP: 13,253 accidents, 626 fatalities)
Vehicle equipped with AEBS as standard (0.8 million units, Rear-end collision: 419 accidents, 0 fatalities, VtoP: 128 accidents, 6 fatalities)

Contents

1. Background

2. Proposal
3. Next Step

Proposal : Revision of UNR131(Advanced Emergency Braking System) to establish new requirements of AEBS for M1/N1

Scope

To extend to M1, N1

*Based on test procedures of JNCAP/Euro NCAP

02 series Moving obstacle/Stationary obstacle for M1/N1 Timeline: 2020 for new types of vehicles 2022 for new vehicles
Test procedure*:

Obstacle	Start speed	Requirement
Moving	$60 \mathrm{~km} / \mathrm{h}$	Avoid impacting a moving target $(20 \mathrm{~km} / \mathrm{h})$
Stationary	$50 \mathrm{~km} / \mathrm{h}$	Avoid impacting a stationary target

03 series Pedestrian detection for M1/N1
Timeline: 2024 for new types of vehicles 2026 for new vehicles
Test procedure*:

Obstacle	Start speed	Requirement
Moving	$50 \mathrm{~km} / \mathrm{h}$	Avoid impacting a cross-moving target $(5 \mathrm{~km} / \mathrm{h})_{2}$

Contents

1. Background
2. Proposal
3. Next Step

Next step

- At the 83th GRRF, Japan has submitted the draft ToR of the new IWG (GRRF-83-18).
- If the other CPs kindly support it, we would like to hold preparatory meetings before the 84th GRRF. (e.g. during the week of ACSF-IWG) to discuss and refine the draft of ToR.
- Japan welcome CPs and stakeholders' participation to the preparatory meetings.

Thank you for your attention.

Ref. Basis of regulation value (Moving obstacle)

- Rear-end collision with moving vehicles (2009)

Total economic loss (million yen)

(= Killed or seriously injured people x Economic loss)
5000
4500
4000
3500
3000
2500
2000
1500
1000
500
0
Speed at hazard perception

Ref. Basis of regulation value (Stationary obstacle)

■ Rear-end collision with stationary vehicles (2009)

Ref. Basis of regulation value (Pedestrian detection) Japan case

■ Collision with cross moving pedestrians(excl. rush out), daytime(2009)
Total economic loss (million yen)
(= Killed or seriously injured people x Economic loss)
3500
economic loss \% 100
90.0\%

804020

0

Speed at hazard perception

[^0]: Source: 2015 Road traffic accident statics (ITARDA)

