EU-Commission JRC Contribution to EVE IWG #### M. De Gennaro, E. Paffumi European Commission, Joint Research Centre Directorate C, Energy, Transport and Climate Sustainable Transport Unit June 6th 2017, Geneva (CH) 23nd Meeting of the GRPE Informal Working Group on Electric Vehicles and the Environment (EVE). Joint Research Centre # **Presentation Summary** Follow-up of the JRC activities for contribution to the EVE IWG under the "in-vehicle battery ageing" topic: - Literature review; - Ageing models; - Implementation and earliest results; - Status of database processing; ## **Battery technologies for xEV** | Table I Typical Passenger Car Applications for Lithium-ion Batteries | | | | | | | | |--|--------------------------|-----------------------------|------------------------|------------------------------------|--|--|--| | Application | Typical
voltage(s), V | Typical Power
levels, kW | Typical
energy, kWh | Commonest
battery type
today | | | | | SLI | 14 | 3 | 0.7 | Lead-acid | | | | | Idle stop | 14 | 3 | 0.7 | Lead-acid | | | | | Mild hybrid | 48–200 | 10–30 | 0.3 | NiMH | | | | | Full Hybrid | 300–600 | 60 | 1–2.5 | NiMH | | | | | PHEV | 300-600 | 60 | 4–10 | Li-ion | | | | | EV | 300–600 | 60 | 15+ | Li-ion | | | | | | | | | | | | | #### **Cathode:** - Lithium-Cobalt-Oxide (LiCoO2); - Lithium-Iron-Phosphate (LiFePO4); - Nickel-Cobalt-Manganese (NCM); - Lithium-Manganese-Spinel-Oxide (LMO); Anode: graphite/carbon/titanate/silicon; | Table II Summary of the Main Lithium-ion Variants | | | | | | | | | |---|---|--|---------------------------------------|---|--------------------------|---|-----------------|---| | _ | Cell level
energy
density,
Wh kg ⁻¹ | Cell level
energy
density,
Wh I ⁻¹ | Durability
cycle life,
100% DoD | Price
estimate,
US\$ Wh ⁻¹ | Power
C-rate | Safety
thermal
runaway
onset, °C | Potential,
V | Temperature
range in
ambient
conditions,
°C | | LiCoO ₂ | 170–185 | 450-490 | 500 | 0.31-0.46 | 1 C | 170 | 3.6 | -20 to 60 | | LiFePO ₄
(EV/PHEV) | 90–125 | 130–300 | 2000 | 0.3-0.6 | 5 C cont.
10 C pulse | 270 | 3.2 | -20 to 60 | | LiFePO ₄
(HEV) | 80–108 | 200–240 | 2000 | 0.4-1.0 | 30 C cont.
50 C pulse | 270 | 3.2 | -20 to 60 | | NCM (HEV | 150 | 270–290 | 1500 | 0.5-0.9 | 20 C cont.
40 C pulse | 215 | 3.7 | -20 to 60 | | NCM (EV/
PHEV) | 155–190 | 330–365 | 1500 | 0.5-0.9 | 1 C cont.
5 C pulse | 215 | 3.7 | -20 to 60 | | Titanate vs. | 65-100 | 118–200 | 12,000 | 1–1.7 | 10 C cont.
20 C pulse | Not
susceptible | 2.5 | -50 to 75 | | Manganese
spinel (EV/
PHEV) | | 280 | >1000 | 0.45-0.55 | 3–5 C
cont. | 255 | 3.8 | -20 to 50 | | | | | | | | | | | Source: P. Miller, J. Matthey Tech. Review (2015) # Electrochemical ageing effects at negative (in-focus look at Li-Ion techs) # SEI (Solid Electrolyte Interface): Creation/Expansion/Dissolution/Plating - 1) Primary loss of cyclable Lithium (side reactions/decomposition); - Secondary loss of active material (dissolution/degradation/delamination); - 3) Resistance increase due to passive films; - 1) + 2) \rightarrow capacity fade; - 3) → reduction of available power; Source: Barre' et. Al., Journal of Power Sources 241(2013) ## **Electrochemical ageing models (in-focus look at Li-Ion techs)** Calendar Ageing: irreversible loss of capacity due to storage; Cycle Ageing: consequence of the battery charge/discharge cycles; → Capacity Fade = f(time, temperature, SOC, DOD, Ah, C-rate) #### **Electrochemical Ageing Models:** - 1) Electrochemical models (description of the in-battery phenomena atomistic & molecular approaches); - 2) Equivalent circuit based models; - 3) Performance based models/analytical models with empirical data fitting; - 4) Statistical methods; Source: Barre' et. Al., Journal of Power Sources 241(2013) # **Electrochemical semi-empirical ageing models** | | Calendar | Cycling | | | | |-----------------|---|--|--|--|--| | LiEoDO4 | Sarasketa-Zabala et. Al. | Wang et Al., Journal of Power Sources, 196(2011) | | | | | LiFePO4 | Journal of Power Sources, 272(2014) | Sarasketa-Zabala et. Al. Journal of Power Sources, 275(2015) | | | | | NCM + Spinel Mn | Wang et Al. Journal of Power Sources, 269(2014) | | | | | # LiFePO4 Cycling (Wang et al. 2011) $$Q_{LOSS-CYC} = Ae^{\left(\frac{-E_a}{RT}\right)}Ah^z$$ # LiFePO4 Calendar & Cycling (Sarasketa-Zabala et al. 2014/15) $$\begin{split} Q_{LOSS-CAL} &= \alpha_{1} e^{\left(\frac{\beta_{1}}{T}\right)} \cdot \alpha_{2} e^{(\beta_{2} \cdot SOC)} t^{0.5} \\ if & 50\% \geq DOD \geq 10\% \quad Q_{LOSS-CYC} = \left(\gamma_{1} \cdot DOD^{2} + \gamma_{2} \cdot DOD + \gamma_{3}\right) Ah^{0.87} \\ else & Q_{LOSS-CYC} = \left(\alpha_{3} \cdot e^{(\beta_{3} \cdot DOD)} + \alpha_{4} \cdot e^{(\beta_{4} \cdot DOD)}\right) Ah^{0.65} \end{split}$$ # NCM/LMO Calendar & Cycling (Wang et al. 2014) $$Q_{LOSS-CAL} = fe^{\left(\frac{-E_a}{RT}\right)}t^{0.5}$$ $Q_{LOSS-CYC} = (a \cdot T^2 + b \cdot T + c) \cdot e^{(d \cdot T + e)I_{rate}} \cdot Ah$ # TEMA - Transport tEchnology and Mobility Assessment #### Transportation Data | Monitored
Vehicles | | Database lines (after cleaning) [·10 ⁶] | Trips No. [·10 ⁶] | Trips' length [km·10 ⁶] | | |-----------------------|--------|---|-------------------------------|-------------------------------------|--| | ovince
Aodena | 16,263 | 15.998 | 2.642 | 14.98 | | | ovince
Firenze | 12,478 | 32.008 | 1.870 | 20.66 | | #### Vehicle Technologies (xEVs): - EVs, from 450 to 2600 kg (curb weight) from 13 to 85 kWh (battery size) from 70 to 265 Wh/km (consumption); - PHEV; - Open Parameters; #### Behavioral Models (recharge with 16 behaviors): - opportunistic-unconstrainted /constrained / price-based / smart-grid; - AC (3.3 kW/10kW) and DC (50 kW); ## Implementation of ageing models in TEMA ### **Earliest Results: Usability Statistics** Vehicle Technologies (xEVs): BEV @ 1,800 kg curb weight - 32 kWh Li-Ion (24 kWh usable) - 205 Wh/km; Long Stop Random AC Recharge Strategy: Stop > 120 min AND Random > 0.6; Recharge at 2kW (3.3 kW single-phase) 3,453 users out of 16,263 vehicles (21.3%) # **Earliest Results: ageing results (EoL @ 80%)** # <u>LiFePO4</u> Cycling: Wang Calendar: Sarasketa # NCM + Spinel Mn Cycling: Wang Calendar: Wang # Status of database processing (EU-wide - IT/NL/BE/FR/GR/PT/DE/LUX/PL/SK/AT/SLO/KR/HU/BG) | | No. of vehicles | Total trips
lengths [km·10 ⁶] | No. of days | Trip length [km] - (mean) | Daily driven
distance – [km] | LDV
Share | HDV
Share | TOTAL | |-------------------------------|-----------------|--|-------------|---------------------------|---------------------------------|--------------|--------------|---| | Province of Modena | 16,263 | 14.98 | 31 | 7.8 | 51.9 | 100% | - | | | Province of Firenze | 12,478 | 20.66 | 31 | 8.0 | 51.3 | 100% | - | | | Province of Amsterdam | 197,754 | 19.86 | 7 | 18.3 | 48.0 | 83.2% | 16.8% | | | Province of Brussels | 96,802 | 11.21 | 14 | 10.2 | 74.0 | 91.2% | 8.8% | | | Province of Paris | 171,220 | 38.39 | 7 | 17.1 | 72.2 | 99.1% | 0.9% | | | Province of Athens | 15,366 | 1.49 | 7 | 11.0 | 53.9 | - | 100% | | | Province of Lisbon | 7,522 | 2.48 | 7 | 15.0 | 86.1 | - | 100% | (22.10())) | | Province of Krefel | 4,160 | 0.97 | 7 | 88.8 | 151.7 | 2.9% | 97.1% | 632,186 vehicles | | Province of Luxembourg | 14,090 | 1.0 | 7 | 12.2 | 30.8 | 92.0% | 8.0% | 139.57 million km
2.57 billion records | | Province of Warsav | 862 | 0.16 | 7 | 51.8 | 124.3 | 2.3% | 97.7% | 2.57 billion records | | Province of Bratislava | 18,296 | 1.0 | 7 | 22.9 | 35.0 | - | 100% | | | Province of Wien | 9,943 | 2.14 | 7 | 37.9 | 469.9 | 0.9% | 99.1% | | | Province of Ljubljana | 11,616 | 4.04 | 7 | 45.3 | 148.6 | 0.7% | 99.3% | | | Province of Zagreb | 12,036 | 3.79 | 7 | 24.3 | 104.6 | 14.0% | 86.0% | | | Province of Budapest | 32,410 | 14.10 | 7 | 44.1 | 179.0 | 0.1% | 99.9% | | | Province of Sofia | 11,368 | 3.28 | 7 | 16.4 | 87.4 | - | 100% | | ## Status of database processing Individual utility factor (support to the definition of the deterioration factor) ### **Next Steps** - Collect further data on ageing models; - Experimental testing (?) JRC needs support on this!; - Perform several scenario analyses by varying: - (1) database; - (2) vehicle type; - (3) recharge strategy; - (4) battery type & ageing model; # Contacts Info: EC DG JRC DIR C ETC Sustainable Transport Unit michele.degennaro@ec.europa.eu elena.paffumi@ec.europa.eu