

EU-Commission JRC Contribution to EVE IWG

M. De Gennaro, E. Paffumi

European Commission, Joint Research Centre Directorate C, Energy, Transport and Climate Sustainable Transport Unit

June 6th 2017, Geneva (CH)

23nd Meeting of the GRPE Informal Working Group on Electric Vehicles and the Environment (EVE).

Joint Research Centre

Presentation Summary

Follow-up of the JRC activities for contribution to the EVE IWG under the "in-vehicle battery ageing" topic:

- Literature review;
- Ageing models;
- Implementation and earliest results;
- Status of database processing;

Battery technologies for xEV

Table I Typical Passenger Car Applications for Lithium-ion Batteries							
Application	Typical voltage(s), V	Typical Power levels, kW	Typical energy, kWh	Commonest battery type today			
SLI	14	3	0.7	Lead-acid			
Idle stop	14	3	0.7	Lead-acid			
Mild hybrid	48–200	10–30	0.3	NiMH			
Full Hybrid	300–600	60	1–2.5	NiMH			
PHEV	300-600	60	4–10	Li-ion			
EV	300–600	60	15+	Li-ion			

Cathode:

- Lithium-Cobalt-Oxide (LiCoO2);
- Lithium-Iron-Phosphate (LiFePO4);
- Nickel-Cobalt-Manganese (NCM);
- Lithium-Manganese-Spinel-Oxide (LMO);

Anode: graphite/carbon/titanate/silicon;

Table II Summary of the Main Lithium-ion Variants								
_	Cell level energy density, Wh kg ⁻¹	Cell level energy density, Wh I ⁻¹	Durability cycle life, 100% DoD	Price estimate, US\$ Wh ⁻¹	Power C-rate	Safety thermal runaway onset, °C	Potential, V	Temperature range in ambient conditions, °C
LiCoO ₂	170–185	450-490	500	0.31-0.46	1 C	170	3.6	-20 to 60
LiFePO ₄ (EV/PHEV)	90–125	130–300	2000	0.3-0.6	5 C cont. 10 C pulse	270	3.2	-20 to 60
LiFePO ₄ (HEV)	80–108	200–240	2000	0.4-1.0	30 C cont. 50 C pulse	270	3.2	-20 to 60
NCM (HEV	150	270–290	1500	0.5-0.9	20 C cont. 40 C pulse	215	3.7	-20 to 60
NCM (EV/ PHEV)	155–190	330–365	1500	0.5-0.9	1 C cont. 5 C pulse	215	3.7	-20 to 60
Titanate vs.	65-100	118–200	12,000	1–1.7	10 C cont. 20 C pulse	Not susceptible	2.5	-50 to 75
Manganese spinel (EV/ PHEV)		280	>1000	0.45-0.55	3–5 C cont.	255	3.8	-20 to 50

Source: P. Miller, J. Matthey Tech. Review (2015)

Electrochemical ageing effects at negative (in-focus look at Li-Ion techs)

SEI (Solid Electrolyte Interface): Creation/Expansion/Dissolution/Plating

- 1) Primary loss of cyclable Lithium (side reactions/decomposition);
- Secondary loss of active material (dissolution/degradation/delamination);
- 3) Resistance increase due to passive films;
- 1) + 2) \rightarrow capacity fade;
- 3) → reduction of available power;

Source: Barre' et. Al., Journal of Power Sources 241(2013)

Electrochemical ageing models (in-focus look at Li-Ion techs)

Calendar Ageing: irreversible loss of capacity due to storage;

Cycle Ageing: consequence of the battery charge/discharge cycles;

→ Capacity Fade = f(time, temperature, SOC, DOD, Ah, C-rate)

Electrochemical Ageing Models:

- 1) Electrochemical models (description of the in-battery phenomena atomistic & molecular approaches);
- 2) Equivalent circuit based models;
- 3) Performance based models/analytical models with empirical data fitting;
- 4) Statistical methods;

Source: Barre' et. Al., Journal of Power Sources 241(2013)

Electrochemical semi-empirical ageing models

	Calendar	Cycling			
LiEoDO4	Sarasketa-Zabala et. Al.	Wang et Al., Journal of Power Sources, 196(2011)			
LiFePO4	Journal of Power Sources, 272(2014)	Sarasketa-Zabala et. Al. Journal of Power Sources, 275(2015)			
NCM + Spinel Mn	Wang et Al. Journal of Power Sources, 269(2014)				

LiFePO4 Cycling (Wang et al. 2011)

$$Q_{LOSS-CYC} = Ae^{\left(\frac{-E_a}{RT}\right)}Ah^z$$

LiFePO4 Calendar & Cycling (Sarasketa-Zabala et al. 2014/15)

$$\begin{split} Q_{LOSS-CAL} &= \alpha_{1} e^{\left(\frac{\beta_{1}}{T}\right)} \cdot \alpha_{2} e^{(\beta_{2} \cdot SOC)} t^{0.5} \\ if & 50\% \geq DOD \geq 10\% \quad Q_{LOSS-CYC} = \left(\gamma_{1} \cdot DOD^{2} + \gamma_{2} \cdot DOD + \gamma_{3}\right) Ah^{0.87} \\ else & Q_{LOSS-CYC} = \left(\alpha_{3} \cdot e^{(\beta_{3} \cdot DOD)} + \alpha_{4} \cdot e^{(\beta_{4} \cdot DOD)}\right) Ah^{0.65} \end{split}$$

NCM/LMO Calendar & Cycling (Wang et al. 2014)

$$Q_{LOSS-CAL} = fe^{\left(\frac{-E_a}{RT}\right)}t^{0.5}$$
 $Q_{LOSS-CYC} = (a \cdot T^2 + b \cdot T + c) \cdot e^{(d \cdot T + e)I_{rate}} \cdot Ah$

TEMA - Transport tEchnology and Mobility Assessment

Transportation Data

Monitored Vehicles		Database lines (after cleaning) [·10 ⁶]	Trips No. [·10 ⁶]	Trips' length [km·10 ⁶]	
ovince Aodena	16,263	15.998	2.642	14.98	
ovince Firenze	12,478	32.008	1.870	20.66	

Vehicle Technologies (xEVs):

- EVs, from 450 to 2600 kg (curb weight) from 13 to 85 kWh (battery size) from 70 to 265 Wh/km (consumption);
- PHEV;
- Open Parameters;

Behavioral Models (recharge with 16 behaviors):

- opportunistic-unconstrainted /constrained / price-based / smart-grid;
- AC (3.3 kW/10kW) and DC (50 kW);

Implementation of ageing models in TEMA

Earliest Results: Usability Statistics

Vehicle Technologies (xEVs):

BEV @ 1,800 kg curb weight - 32 kWh Li-Ion (24 kWh usable) - 205 Wh/km; Long Stop Random AC Recharge Strategy: Stop > 120 min AND Random > 0.6; Recharge at 2kW (3.3 kW single-phase)

3,453 users out of 16,263 vehicles (21.3%)

Earliest Results: ageing results (EoL @ 80%)

<u>LiFePO4</u> Cycling: Wang Calendar: Sarasketa

NCM + Spinel Mn Cycling: Wang Calendar: Wang

Status of database processing (EU-wide - IT/NL/BE/FR/GR/PT/DE/LUX/PL/SK/AT/SLO/KR/HU/BG)

	No. of vehicles	Total trips lengths [km·10 ⁶]	No. of days	Trip length [km] - (mean)	Daily driven distance – [km]	LDV Share	HDV Share	TOTAL
Province of Modena	16,263	14.98	31	7.8	51.9	100%	-	
Province of Firenze	12,478	20.66	31	8.0	51.3	100%	-	
Province of Amsterdam	197,754	19.86	7	18.3	48.0	83.2%	16.8%	
Province of Brussels	96,802	11.21	14	10.2	74.0	91.2%	8.8%	
Province of Paris	171,220	38.39	7	17.1	72.2	99.1%	0.9%	
Province of Athens	15,366	1.49	7	11.0	53.9	-	100%	
Province of Lisbon	7,522	2.48	7	15.0	86.1	-	100%	(22.10()))
Province of Krefel	4,160	0.97	7	88.8	151.7	2.9%	97.1%	632,186 vehicles
Province of Luxembourg	14,090	1.0	7	12.2	30.8	92.0%	8.0%	139.57 million km 2.57 billion records
Province of Warsav	862	0.16	7	51.8	124.3	2.3%	97.7%	2.57 billion records
Province of Bratislava	18,296	1.0	7	22.9	35.0	-	100%	
Province of Wien	9,943	2.14	7	37.9	469.9	0.9%	99.1%	
Province of Ljubljana	11,616	4.04	7	45.3	148.6	0.7%	99.3%	
Province of Zagreb	12,036	3.79	7	24.3	104.6	14.0%	86.0%	
Province of Budapest	32,410	14.10	7	44.1	179.0	0.1%	99.9%	
Province of Sofia	11,368	3.28	7	16.4	87.4	-	100%	

Status of database processing

Individual utility factor (support to the definition of the deterioration factor)

Next Steps

- Collect further data on ageing models;
- Experimental testing (?) JRC needs support on this!;
- Perform several scenario analyses by varying:
 - (1) database;
 - (2) vehicle type;
 - (3) recharge strategy;
 - (4) battery type & ageing model;

Contacts Info: EC DG JRC DIR C ETC Sustainable Transport Unit

michele.degennaro@ec.europa.eu elena.paffumi@ec.europa.eu