

WorldSID 5th TEG: Status

Informal Dummy Working Group
Washington D.C.
Sept. 19, 2012

Dan Rhule Bruce R. Donnelly, Ph.D. - Chair

History

- 1st meeting November 10, 2011, Dearborn, MI.
- 2nd meeting January 11, 2012, web only meeting
- 3rd meeting March 16, 2012, London, UK
- 3rd meeting April 23, 2012, Plymouth, MI
- 5th meeting June 14, 2012, Plymouth, MI
- 6th meeting July 26, 2012, Plymouth, MI
- 7th meeting August 30, 2012, Plymouth, MI
- 8th meeting September 28, 2012, Plymouth, MI
- 9th meeting TBD October, Savannah, GA?

Organization

- Terms of Reference
 - Submitted to parent group
- E-mail list constructed
 - 59 participants (approx. 1/4 are active)
- Data archive
 - UVa Colab site (data & presentations)
- Collaboration with ISO WG6
 - Injury criteria development (CEESAR-Petitjean/Troiselle)
- Collaboration with ISO 50th Group
 - Concurrent meetings

Dummy Population

APROSYS	4	Prototype, 1 refurb. TRL
Ford	1	SBL B, not updated
 Transport Canada 	1	SBL B, several crash tests
NHTSA/VRTC	3	SBL C, evaluation
■ GM	1	SBL C, evaluation
Unknown?	3	
on order	3	SBL C
Total	13 +	-3 on order

Testing

Humanetics

certification testing

- TC

crash testing

NHTSA/VRTC

- Development of scaled biofidelity targets for 5th
- biofidelity & certification pendulum testing
- Trouble shooting pelvis contact

■ TRL (EC)

- pendulum & sled testing in support of ISO WG 6 injury criteria
- biofidelity & trouble shooting (IRTRACC, shoulder, pelvis, abdom./flesh)

OSRP testing - planned

• Abdomen rib to pelvis flesh testing

Durability?

- Is 8.9 m/s reasonable?
 - Yes, like SID IIs, survival but no measurement
 - TRL testing indicates IR-Traces reached max. thorax displacement at
 6.3 m/s in rigid, flat wall sled tests

Non-reproducibility

- VRTC thorax certification responses among dummies
- Material changes
 - Head, pelvis ureol, hyperlast (5th & 50th dummies)

Shoulder contact with neck bracket

- Pelvis anterior flesh/abdomen rib #2 interaction
 - Reduced rib stroke A problem? OSRP/MCW sled testing planned

- Iliac wing & S-I load cell contact
 - Redesign necessary

Schedule

Most issues are manageable, except -

- Pelvis redesign by HIS expected to take more than one year!
 - Little substantive work can be done without pelvis
 - Sled testing, R&R, pelvis biofidelity & cert. spec. on hold
 - Injury criteria on hold
- TEG is searching for a shorter/better solution
 - VRTC modifying dummy and testing
 - Design revision necessary

Thank you

Questions?

Hip Pocket Slides

WorldSID 50th Male Shoulder Biofidelity

Shoulder External Response Summary					
Test Condition	Measurement	Response Comparison (\sqrt{R})			
		WorldSID	ES-2re		
NHTSA (Bolte) 4.4 m/s Lateral Pendulum Impact	Pendulum Force (kN)	0.87	1.10		
NHTSA (Bolte) 4.4 m/s 15° Pendulum Impact	Pendulum Y-axis Force (kN)	1.26	2.96		
	Pendulum X-axis Force (kN)	0.84	1.96		
NHTSA (Bolte) 4.4 m/s 30° Pendulum Impact	Pendulum Y-axis Force (kN)	0.54	3.44		
	Pendulum X-axis Force (kN)	1.59	1.83		

Shoulder Internal Response Summary						
Test Condition	Measurement	Response Comparison (\sqrt{R})				
		WorldSID	ES-2re			
ISO 9790 Shoulder Test 2 7.2 g Sled Test	Peak Horizontal Displacement of T1 Relative to Sled (mm)	0.24	1.47			
NHTSA (Bolte) 4.4 m/s Lateral Pendulum Impact	Shoulder Y-axis Displacement (mm)	1.55	1.11			

