

Landi Renzo experience with Dual Fuel systems

GFV Workshop

SP

Bruxelles, 13/12/2012

Landi Renzo S.p.A.

www.landi.it

Agenda

- History of Diesel Dual Fuel in Landi Renzo
- Integrated Technical Approach
 - Components
 - Layouts
 - Targets & Optimization
 - Applications
 - Reliability & Safety
 - Homologations
- Conclusions & Perspectives

SP

R

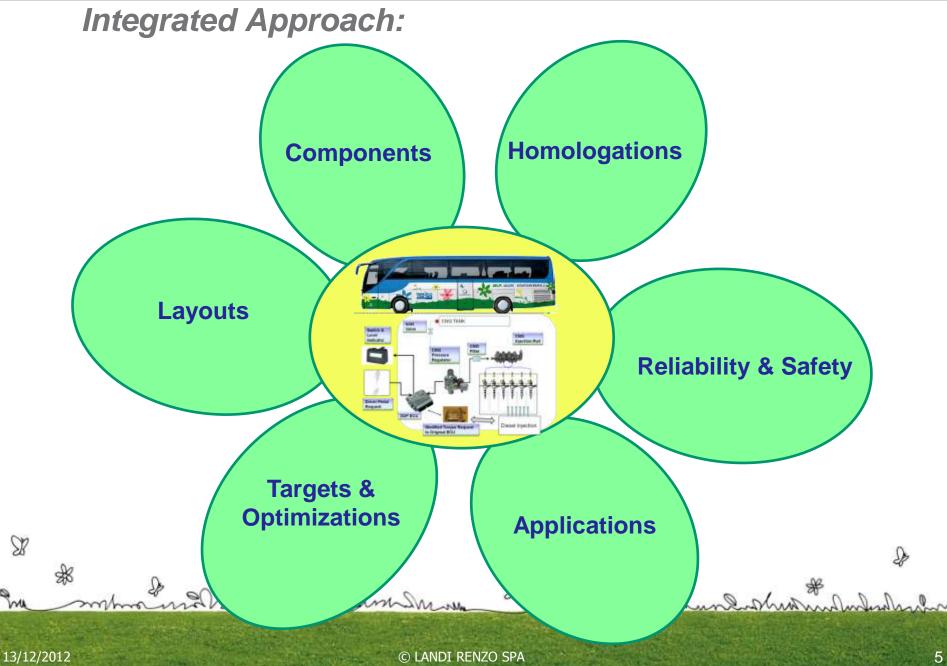
SP

History of Diesel Dual Fuel in Landi Renzo

- 80s: Dual Fuel experience on Buses: Mechanical Diesel pump systems and CNG mixer systems
- 2007: Engine test bench: 2800cc, Common Rail
- 2008: LCV vehicle for drivability experience
- 2009: Passenger Car: retrofit approach on 1900cc, Common rail
- 2010: Experience with HDs
- 2011: First Homologation Passenger Car (Italian regulations) Homologation Euro II HD First applications for urban mobility and trucks Focus on pollutant vehicles currently in use
- 2012: Homologation Euro III HD (2 engines)
 - Homologation Euro 4 LD
 - Further extension to different applications

SX

Dual Fuel in European Community


Technology	CO ₂ Benefit (AEA/Ricardo)	NAS (2010) CO ₂ Benefit	Technology	CO ₂ Benefit (AEA/Ricardo)	NA\$ (2010) CO ₂ Benefit
Systems	10 - 20%	N/A		applications	
Electric Water pump	0.7 % for variable now 1 – 4% electric	N/A	Lux Rolling Resistance Tyres	Achievable CO ₂ benefit depends on the number of tyres replace but trials suggest an average of	Between 4 and 11%: Class 8 – 4.5% average, Class 6: 1.4
Variable speed oil pump	1 – 3% possible	N/A		5% is possible for HGV, 3% for intercity and	- 1.8%, Refuse 1.5%, Burt Van 18, Coach
Hydrogen fuel cells	100% - tailpipe reduction only	N/A	Single Wid tyres Automatic Pressure Adjustment Aerodynan Trailers Aerodynan Dual Fuel technology has been recognized by European Community as an important technology for future CO2 reduction		
Electric Vehicles		N/A			
Stop / Start Hybrid	HGV: 0 – 3%, average 1% Interdity / Coach: Up to 15%, average 3% City / Bus / Utility: Up to 30%, average of 6%	N/A			
Mechanical Turbocompound	3 – 5% - best for long haul applications	2.5 - 5%			
Electrical turbocompound	HGV: 2 – 8%, averaging at 3% Intercity / Coach: 1 – 5%, average 2.5% City / Utility / Bus: 0 – 2%, average 1%	3 – 10%, average benefit of 4 – 5% estimated including electric accessories	Fairings Active Aero	Up to 8.7%	8%
			Lightweight	1-2% per tonne of weight saved, slightly better on freight efficiency basis	1 – 2% per 1,000lb weight reduction
Bottoming Cycles	HGV: 1.5 – 6% with average values of 5% Intercity / Coach: 1 – 3%, average 2.5% City / Bus / Utility: 1 to 3%, average 1.5%	Up to 10%, Cummins demonstrated 7.2% using a Rankine cycle	Materials	1.7% on volume limited applications and 4.2% on weight limited	Bus - 3.75 - 7.5% per 10% reduction
Controllable Alr Compressor	HGV: Average of 3.5% CO ₂ reduction, range of 1 – 4% Intercity / Coach: Average of 1.5%, range of 1 – 2% City / Bus / Utility: Limited benefit due to frequent stop / start	N/A	Alternative Fuel Bodies	10 – 20% depending on body power system replaced	N/A
			Predictive Cruise Control	2 – 5% but will vary with route	Figures vary between 1 – 5% benefit
			Vehicle Platooning	~20% for motorway speeds	N/A
Electric Engine Accessories	0 - 8%	2 - 4%	Green Zone Indicator Smart	5 - 10%	N/A
Automated Transmission	Up to 10% replacing manual with AMT	4 - 8%	Alternator, Battery Sensor	Estimated at 1 - 2%	N/A
Full Hybrid	HGV: Benefit ranges 4 – 10%, averaging 7% Intercity / Coach: Benefit ranges 5 – 20% with an average of 10% City / Utility: Benefit ranges from 15 – 30% with an average of 20% Bus: Benefit ranges from 20 – 40% with an average of 30%	Class 8: 5 - 10% Class 6: 20 - 45% Refuse: 20 - 35% Urban Bus: 12 - 50% Coach: 5 - 40% Van: 18 - 30%	& AGM Battery Acceleration		an a
			Control	Up to 6% depending on driving style	N/A
			Governing Speed Control – Progressive Shift	1 – 4% depending on ditving style	NA
Flywheel Hybrid	HGV / Intercity / Coach: Benefits range from 5 – 15% with an average of 5% for HGV and 7.5% for intercity and coach		Eco Roll – Freewheel Function	${\sim}1\%$ - expected to be highly dependent on application	N/A
	City / Utility: Benefit varies from 15 – 22% with an average of 15% Bus: Benefit ranges from 18 - 25% with an average of 20%	N/A	Source Ricardo estimates, National Research Council, Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles		
Hydraulic Hybrid	Estimated CO ₂ benefit varies greatly with duty cycle but can be up to a maximum of 25% in frequent stop / start cycles with average "real world" usage seeing 15 - 18% in similar	City use: 20 – 25% Highway: 12% UPS demonstrated 60 - 70% reduction	 Source: "Reduction and Testing of Greenhouse Gas (GHG) Emissions from Head Duty Vehicles – Lot 1: Strategy" Final Report to the European Commission – DG Climate Action Ref: DG ENV. 070307/2009/548572/SER/C3 		

SP

ſ

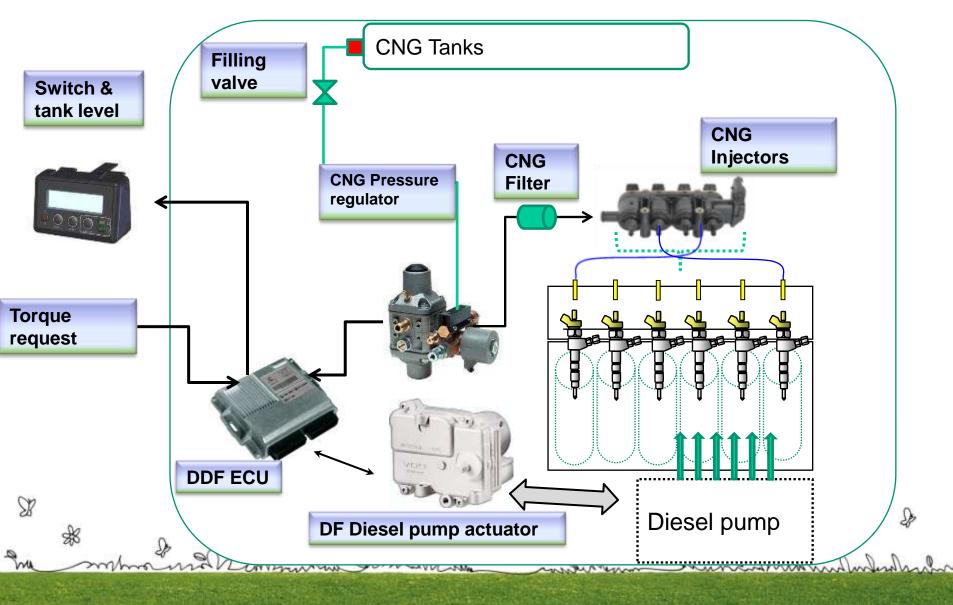
© LANDI RENZO SPA

SP

Components

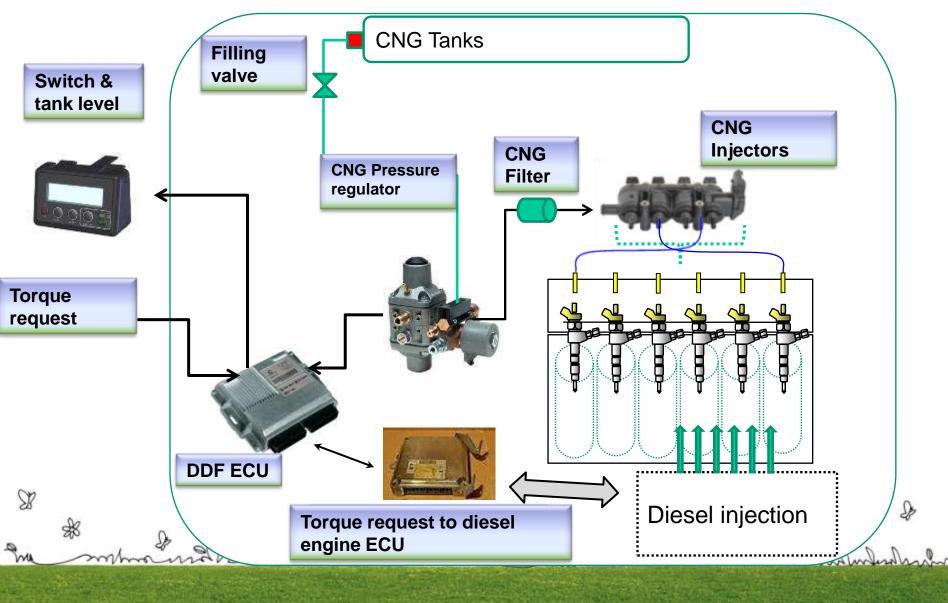
- First applications shared components from CNG experience on petrol engines
- Due to specific characteristic of DDF engines, a constant evolution of components has been started and is planned for the future:
- Dedicated components (fuel pump actuators, accelerator pedal interfaces..)

man Sim Sh


- Dedicated Electronic Control Units (ECU) capable of interfacing with diesel electronics.
- Dedicated pressure regulators, including electronic pressure regulator and injectorless electronic regulators
- Dedicated Driver interfaces

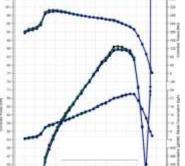
SR

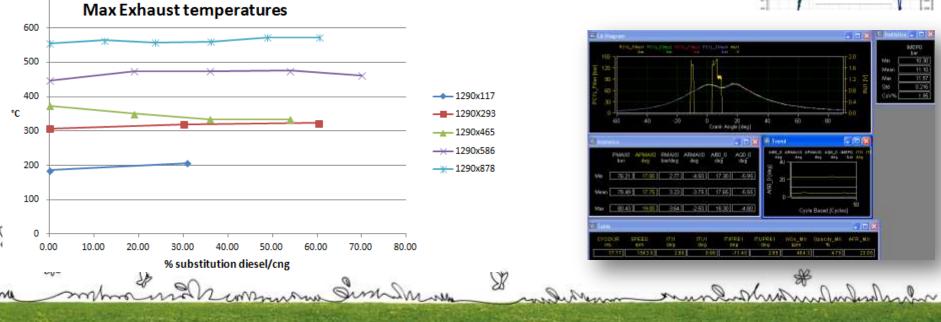
13/12/2012


Layout DDF – Mechanical pump systems

13/12/2012

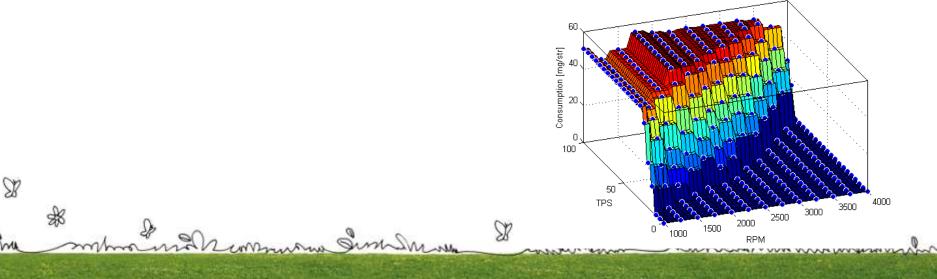
Layout DDF – Electronic injection systems




13/12/2012

Targets & Optimization (1/2)

- Each application must preserve a number of characteristics of the original engine:
- Durability and Reliability:
 - Maximum output torque ≤ torque in Diesel mode
 - Combustion peak pressure ≤ pressure in Diesel mode
 - Combustion Stability
 - Exhaust temperatures ≤ temperatures in Diesel mode



Targets & Optimization (2/2)

- The calibration targets for DDF applications are:
 - CO2 saving
 - Fuel Cost saving
 - PM reduction
 - Noise reduction
- Such saving are enhanced by achieving a reasonably high diesel substitution rate, compatible with:
 - Knowledge of the base engine characteristics
 - Fine tuning of the diesel<=>CNG substitution in function of engine working point

Applications

- The basic requirements come from the market need of a DF conversion compatible with a large variety of different applications:
 - Original Fuel System (mechanical pump, electronic injection)
 - Vehicle subsystems (CAN, distributed electronics, no electronics)
 - Specific engine destination (Industrial, Truck, Bus, Marine, Genset)

And with different technical means:

- Availability of engine dyno
- Availability of chassis dyno
- Tests/measurements on the road
- This variety of systems leads to the definition of a comprehensive calibration procedure with large support from calculation tools:
 - Defined tests and acquisitions
 - Optimization tools (post processing)
 - Verification tests

SR

13/12/2012

SR

Reliability – Engine Endurance test

- Endurance test has been performed on 2.8l engine for 1000 h (synthesis test) according to rpm/load profile of engine manufacturer test.
- First part of test (250h) was performed in Diesel and remaining (750h) in Dual in order to compare the behavior deviations between Diesel Vs Dual.
- Periodic measurements (250 h):
 - Full load curve with measure of torque, boost pressure, smoke, BSFC, blow-by
 - Oil consumption @ full power
 - Oil sample & analysis
- Summary of results:

SX

- Same performances on all test periods (torque, boost pressure, smoke, BSFC, blow-by)
- Same oil consumption
- Same oil properties with sensible decrease of Soot in Oil for Dual Fuel operations
- On going components engine disassembling for component analysis; first visual inspection is positive.

mune Sun Mune

Safety

- CNG Fuel System safety: no new issues, because the typical approach is to use same components and apply same rules of standard CNG fuel systems.
- **Torque safety issues**: being Dual Fuel Systems integrated into Diesel torque management system, potentially the engine could generate a higher torque respect to the driver request.
- This can happen in case of failure of components or unexpected operating conditions:
 - Excess of CNG ("rich" combustion)
 - Failure in gas pressure regulation system
 - ...
- Generally, in case of failure or relevant diagnostics, switch back to Diesel is applied.
- Complete FMEA of the system has been performed since the early development, leading to the highest level of safety through:
 - Redundancy of sensors
 - Specific diagnostic functions
 - Recovery functions

SP

Homologations

- At present in Europe a common regulation for Dual Fuel conversions (retrofit) approvals is not applicable.
- In Italy, a National rule is applicable for conversion kit as per "Circolare 220/M3/C2" defining engine/vehicle and conversion system families respectively identified by:
- 1) the engine type, displacement range (± 25%) and the emission class level derived from the tested parent engine (including earlier emission rules stages).
- 2) the R110 approved conversion kit used for parent engine homologation (including alternative components).
- List of parent engines fitted with Landi Renzo conversion kit, approved by Italian Government after testing according to the original approval (testing facilities):
 - 1) 1.9 lit. Euro 4 (chassis dyno)
 2) 3.0 lit. Euro 4 (chassis dyno)
 3) 2.8 lit. Euro II (engine dyno)
 - 4) 7.7 lit. Euro II (engine dyno)
 - 5) 10.3 lit. Euro III (engine dyno)
 - 6) 3.0 lit. Euro III (engine dyno)
 - 7) 5.9 lit. Euro III (engine dyno) → forecast Jan / 2013
- CNG DDF system components are installed according to ECE/ONU R110.

mereline & markane anounces Some and me

Conclusions and Perspectives

- Dual Fuel has proven to be a viable and reliable technology for using CNG on obsolete and current powertrains. It allows:
 - the recovery of dated fleets that should be discontinued otherwise, by reducing pollutant emissions and improving fuel economy.
 - A flexible use of Diesel and gaseous fuels, matching power and environment issues, depending on engine working point.
- Further developments include:
 - Additional functionalities, for intelligent moving and fuel consumption reduction
 - Increase the application field (including off-road machines and gen-sets)
 - Use of biofuels for even better sustainability, and of LNG for long-haul vehicles
 - Introduction of new components for fuel system, specialized for DDF technology
 - Cooperation with other manufacturers and the authorities to define an European framework for Dual Fuel regulations.

SR

THANK YOU

