

World leader in alternative fuel systems

Workshop Heavy Duty Dual-Fuel Retrofits Brussel 13-12-2012

Jasper van Sambeek, Product Manager Dieselblend

© 2012 Prins Autogassystemen B.V.

- 1. Introduction Prins Autogassystems B.V.
- 2. Why Dual-Fuel?
- 3. Applications
- 4. Technical explanation
- 5. Emissions
- 6. Why retrofit regulation ?

Introduction Prins

- Dutch designer and manufacturer of alternative fuel systems since 1986
- Headquarter in Eindhoven, the Netherlands
- Subsidiary of SHV Energy, world leader in the distribution of LPG
- In-house product development, test and training facilities
- Customers in over 50 countries include OEMs, Country Importers and Distributors worldwide
- Prins works with A-quality partners like Keihin (Japan) for its A-quality brand

System groups

1. Mixer systems	 AFC [Air Fuel Control] AFS [Air Fuel System] SCS [Saipa CNG System] ECO [Electronic Control] 	1985-1990 1990-2003 2005-2009 2009 >
2. Gas injection systems	 YPS [Yde Prins System] VSI LPG [Vapour Sequential Injection] VSI-2.0 LPG [VSI 2nd generation] VSI-DI LPG [VSI-Direct Injection] VSI-CNG VSI-2.0 CNG [VSI 2nd generation] 	1998-2002 2002 > 2011 > 2009 > 2007 > 2012 >
3. Diesel blend systems	 Diesel blend LPG Diesel blend-2.0 LPG Diesel blend CNG Diesel blend-2.0 CNG 	2009-2011 2012 > 2009-2011 2012 >
4. Liquid gas injection systems	• LiquiMax • Direct LiquiMax	2011 > 2011 >

Why Dual-Fuel ?

Why Diesel blending?

- Costs reduction.
 - Up to 15 % fuel savings
- Significant reduction of emissions by using alternative fuels.
 - contributes to "green" image of your company
 - meets demand for environmentally conscious ECO-transport
- Low system costs.
 - Not necessary to rebuild a diesel engine into an otto-engine [mono fuel LPG/CNG]
- Truck maintenance interval stays the same.
- No downtime when system fails.
 - Able to switch back to full diesel operation

Savings

Savings depending on:

- Vehicle /engine type
- Vehicle use
- Type of load
- Type of fuel blending LPG-CNG LNG
- Local fuel prices

- Savings are achieved because a percentage of the diesel is replaced with LPG/CNG which is far cheaper
 - LPG : **25-30 %** average blend rates
 - CNG : **35-40 %** average blend rates
- The more miles covered the greater the savings!!

Prins Calculator for LPG or CNG

Data used for calculation:		
LPG composition		
Percentage propane:	50	%
Percentage butane:	50	%
Kilometers/year:	120.000	kilometers
Fuel consumption diesel:	30	l/100 km
Fuel price diesel:	1,15	Euro/liter
Fuel price LPG:	0,69	Euro/liter
Average blend percentage	25	%
Fuel tank capacity Diesel	400	liter
Nett Fuel tank capacity LPG	200	liter

1 liter diesel is equivalent to:	1,44	liter LPG	
100% Diesel mode:			
Liters diesel used:	36.000	1/year	
Driving range	1.200		assumes 90% usable tank volum
Total fuel cost per year:	41,400	Furn	
CO2 emissions per year	97,2		
Dieselblend-LPG mode:		_	
Dieselbieno-UPG mode:			
Liters diesel used:	27.000	l/year	
Liters LPG used:	12.940	l/year	
Fuel consumption diesel	22,5	1/100 km	
Fuel consumption LPG	10,8	l/100 km	
Driving range diesel	1,600	km	assumes 90% usable tank volum
Driving range LPG	1.855	km	
Fuel cost diesel:	31.050	Euro	
Fuel cost LPG:	8.928	Euro	
Total fuel cost per year:	39.978	Euro	
CO2 emissions per year diese	72,9	ton	
CO2 emissions per year LPG	20,1	ton	
Total CO2 emissions per year	93,0	ton	
Fuel cost saving:	1.422	Euro/ye	ar
CO2 emission reduction		ton	

Applications

Applications heavy duty LPG

Applications heavy duty LPG

250 Liter / 376 Liter LPG

Applications heavy duty CNG

Applications heavy duty CNG

4 x 100 / 120 / 140 Liter LPG

1 x 100 / 120 / 140 Liter LPG

Tank configuraties

Applications medium duty

Toyota Landcruiser 3.0

Ford Transit 2.2/2.4

Applications LNG

Applications Asia

Applications America

A Quebec company wants to sell you on propane-powered trucks. And it appears to have the technology to do it.

32

Propane's promise

By Steve Bouchard

grill? Not surprisingly, the idea is r

tion (See "Grawing Pains" og Så

However, a new Quebec company, BL Energie uld turn the tide.

could ham the blde. III, lixingle has imported from Holland a solution that converts trucks so they can operate on a 70:00 mix of dissolpropute and III, claims that the overall sering in fusi cost on early reach the 15-percent mark. The system was their installaded in thoses and more recently, in two class-8 trucks belong-

The hysical was that associate in brains and more incrementing, in the case a tracks occurring (g) DTTT Group Otherminer, the the results are encouraging. Yven Bicksiah is president of the three-year old BL. In 2009, he approached Douglas solids, a Program officer In Quebeck Transportation Department of National Resources and Windfile. (As one Industry) Inder pet II, Labelle In Bile Quebeck IBN man on the fired devides address anisotronic and another threads the results on the fired devides address anisotronic anisotropic and the solid sectors. ne het h

rd," pg. 35) tale the effortmeness of its We are still at a real

ant player in the project: is Su ions did not follow the same speed as the engine 4790 2002 23

Applications Africa

Gen-sets

Requests worldwide

Technical explanation

- Central injection (single point) =>LPG/CNG injected before or after turbo charger.
- Sequential injection=> LPG/CNG injected per cylinder into the intake manifold just before the inlet valve.
- Disadvantages central gas injection before/after turbocharger:
- Large volume explosive air/fuel mixture in intercooler and intake;
- High risk of LPG/CNG leakage in the intercooler and intake system;
 Diesel engines have no gas-tight seals in the turbocharger;
- Slow response of engine fueling;
- During valve overlap a portion of the air fuel mixture will be wasted directly into the exhaust [higher HC emissions].
- Central injection easier to program (universal kits).

Engine compartment

Injector inserts

Fuel must be injected as near to the inlet valve as possible.

	Engine RPM							
load	600	800	1000	1200	1400	1600	1800	2000
10	0	0	0	0	0	0	0	0
25	0	29	37	35	35	38	32	0
40	0	38	46	49	47	47	45	0
55	0	41	47	47	43	45	44	0
70	0	32	41	41	39	40	39	0
85	0	27	35	38	32	32	27	0
100	0	10	20	20	20	17	8	0

Blend percentage

Emissions

DAF XE 1260 (Euro 3) LPG TNO

•	Same torque output	
---	--------------------	--

- CO₂ reduction 4,3 %
- NO_x reduction 8,9 %

Diesel Dual fuel			Euro 3 limit			
СО	1,72	6,8	5,45	g/kWh		
NOx	5,41	4,93	5,00	g/kWh		
NMHC	0,13	2,75	0,78	g/kWh		
PM	0,087	0,094	0,16	g/kWh		
CO2	628	601		g/kWh		

DAF XF1260 (EuropeanTransient Cycle)

MAN TGX 18.400 (Euro 5) CNG TNO

Cvcle

Emission test TNO Average advantage :

- CO2 reduction 5 %
- NO_x reduction 16,4 %

	Diesel	Dual fuel	Euro 5 limit				
СО	0,16	1,26	1,50	g/kWh			
NOx	2,25	1,88	2,00	g/kWh			
THC	0,02	1,5	0,46	g/kWh			
PM	0,033	0,033	0,02	g/kWh			
CO2	684	650		g/kWh			

MAN TGX 18.400 CNG European Transient

Portable Emission Measurement system (PEMS test)

Why retrofit regulation ?

Why retrofit regulation ?

- Worldwide Dual-Fuel applications
- Installing systems without homologation /safety check
- No entry of market without homologation (Germany) Entering EU countries possible without regulation
- Regulation (R115 ?) with HC dispensation ?
 Big investments required for after treatment systems
- Regulation (R115 ?) only possible if emission test are affordable ! Family building
- Can the Euro 6 engines been converted with a retrofit system ?

Prins Autogassystemen B.V. Jan Hilgersweg 22 - 5657 ES Eindhoven The Netherlands

Tel. +31 (0)40 254 77 00 - Fax +31 (0)40 254 97 49 Internet: www.prinsautogas.com - E-mail: sales@prinsautogas.com

Follow us @ twitter: @Prins_Autogas

