Submitted by France Document No. ITS/AD-12-07 (12th ITS/AD, 22 June 2017, agenda item 3-4)

Automated vehicles Horizontal regulation

Directorate general for infrastructure, transport and the sea Pierre BAZZUCCHI

Directorate general for energy and climate

ITS/AD informal meeting, June 22, 2017

Outline

- Context and grounds to act
- Importance of definitions
- Regulation "philosophy"
- Considerations on validation

de l'Écologie, du Développement durable et de l'Énergie

Context and grounds to act

- Need for a systemic approach
 - # vehicle components / functions
 - Interactions vehicle / driver / driving environment
 - Connectivity
 - Learning systems
- Need for a comprehensive approach
 - Increasing variety of use cases
 - # automated functions
 - # driving conditions or design domains
 - # triggering + transition conditions

Importance of definitions

- Vehicle's subsystems
 - Driver
 - Automation systems
 - HMI's
 - Vehicle's ECU + components

Use cases =

- Operational design domain (= driving environment)
- Automation functionnalities (= automated manœuvres)
- Triggering (= activation / desactivation) conditions
- Driving task-sharing

Horizontal regulation "philosophy" (1)

Regulation domains

- Non use-case specific :
 - Data recording and sharing, Privacy, Cyber security
 - System safety
 - Perception functions
- Use-case specific :
 - Operation domain
 - definition
 - recognition
 - Driver's attitude
 - expections
 - monitoring
 - Automation functions
 - Elementary functions
 - Triggering (activation / desactivation) conditions
 - Transition procedures
 - Emergency and minimal risk manoeuvers
 - Logigram of manoeuvers

Horizontal regulation "philosophy" (2)

- Use case description
- Use case criticity analysis \rightarrow critical situations and events
- Use case requirements =
 - Horizontal
 - Events and situations criticity-independent
 - Perception functions
 - Operation domain recognition
 - HMIs (incl drivers monitoring)
 - Events and situations criticity-dependent
 - Situations and events responses (incl minimal risk manouevres)
 - Vertical
 - Non automatic functions
 - ADAS

NB : articulation horizontal / vertical to be clarified

Validation approaches and tools (1)

Validation approaches' simplistic taxonomy

- Types (levels) of requirements
 - Situation and event aknowledgment
 - Response
 - Availability
 - Functional description
 - Required functionnalities
 - Required performance

Types (levels) of verification

- Self declared
- Evidence-based declared
- Third party certified
- Authority tested
- Validation tools
 - Documentation screeing or analysis
 - Simulations
 - Tests (one driver or multi-drivers)

Validation approaches and tools (2)

A possible proportionate framework

Level of verification	Self-	Evidence	Certified	Tested
Level of criticity	declaration	based		
Criticity level 1				
Criticity level 2				
Criticity level 3				
Criticity level 4				
Criticity level 5				

Some references

- 1. ACSF-11-09 (EC) Commission study on vehicle certification
- 2. AdaptIVe-SP2-v12-DL-D2.1 System Classification
- 3. Villa_Ladenburg_Use_Cases_English_Release
- 4. Pegasus_Validation of assisted and automated driving systems
- 5. Pegasus_Safety assurance based on an objective identification of scenarios
- 6. From development to type approval
- 7. AdaplVve evaluation methodology for automated vehicles
- 8. Requirements on tools for assessment and validation of assisted and automated driving systems
- 9. Safety Assurance for Highly Automated Driving The PEGASUS Approach
- 10. AUTONET Prototype validation report and performance analysis
- 11. Assessment of the ISO 26262 Standard, "Road Vehicles Functional Safety"
- 12. Best Practices for Embedded Software Testing of Safety Compliant Systems

 National Instruments
- 13. Certification for Autonomous Driving
- 14. Challenges in applying the ISO 26262 for driver assistance systems
- 15. ISO 26262 in Practice Resolving Myths with
 - 16. Challenges in Autonomous Vehicle Testing and Validation
 - 17. Interactive Safety Analysis Framework of Autonomous Intelligent
 - 18. Driving to Safety
 - **19. A Philosophy for Developing Trust in Self Driving Cars**

RÉPUBLIQUE FRANCAISE

20. NHTSA guidance + various research reports: