Draft Regulation on Driver Assist Systems to Avoid Blind Spot Accidents
 Development of Test Procedure and First Verification
 Tests

Patrick Seiniger
Deputy Head of Section, Active Vehicle Safety and Driver Assistance Systems
Federal Highway Research Institute
Germany

Agenda

July 18 (Tuesday)

11:00 Introduction to the German Proposal
12:30 Lunch
13:30 Accidentology Demonstration
15:30 Demonstration Accidentology
18:00 Closure of first day

July 19 (Wednesday)

9:00 Test
12:00 Lunch
13:00 Preparation of informal document to change the German proposal
16:00 Closure of meeting

Lunch

Tuesday	Wednesday
Hot Curry/Mango noodles with cashew	Leberkäse (kind of meat loaf) with sauce and fries

Chickenbreast in parmesan-eggcrust with spaghetti

Turkey schnitzel with curry sauce and rice

Savoy cabbage
Green beans

Background / History

- Concepts and Prototypes for ADAS systems go back until at least 2000...
- ... and yet we had no systems in place
- Various different aftermarket solutions available
- Most of them have their shortcomings
- Mirrors nowadays cover the complete field of view...
- ...and yet there are severe accidents, still.
- BASt was asked to priorizite research in Spring 2014 in the course of several accidents with a high severity in Germany

Previous Work

- Test protocol \& requirements development second half of $2014 \rightarrow$ Report „Driver Assistance System for Right-Turning Trucks - Foundations of a Test Procedure"
- First verification tests spring 2015
- First GRSG document (showing accidentology and background) in Autumn 2015
- Full verification tests Spring \& Autumn 2016
- Single Tractor, Spring 2016
- Single Tractor, Tractor-Semitrailer Autumn 2016
- City Bus, Autumn 2016
- Single Truck, Winter 2017
- Most recent GRSG documents: Test procedure (working document to GRSG 2017_01)

State Of The Art

	System (Year)	Technical Maturity	Sensor concept	IWI concept
	MAN MoTiV (2000)	Demonstrator, discontinued	LASER scanner, region unknown	Unknown
	Mercedes Benz Blind-Spot Assist (2016)	In production (since 09/2016)	RADAR, viewing region from rear of articulated truck up to 2 m in front	Information, Warning, not coupled to turn signal activation
$\begin{aligned} & \frac{1}{U} \\ & \frac{1}{U} \\ & > \end{aligned}$	Volvo Intersafe-2 (2011)	Demonstrator	Sensor fusion of 5 LASER scanner, several ultrasonic sensors, mono camera, covering the side of the truck up to 15 m in front	Information, Warning, (coupling to turn signal unknown)
■	Fuel Defend Side-Warn (2014)	Aftermarket	4 ultrasonic sensors covering side of vehicle only	Warning, coupled to turn signal activation, up to 26 km/h
K	FusionProc CycleEye	Aftermarket	RADAR and Camera	Warning/Information (unknown)
凹	Safety Shield Systems CycleSafetyShield	Aftermarket	Multiple Cameras covering side and front	Warning/Information (unknown)
$\stackrel{1}{4}$	Sentinel BikeHotspot	Aftermarket	Ultrasonic sensors	Warning (internal and external) up to 16 km/h

ACCIDENT SITUATION

Accident analysis－statistics（police reported）

Right turning trucks and straight driving cyclists（extrapolation for Germany）：

	Cyclists	Pedestrians
injury accidents	640	55
seriously injured	118	16
fatalities	23	4

Main accident types

Bicyclists: Accident Partners and Accident Types

				$\sqrt{ }$					
				hrrad und	Gkz na	GG mi			
		t und		> 7,5 t u	Sattel	epper		gesam	
Dtld.; innerorts	U(P)	Verun (Rad		U(P)	Verun		$U(P)$	Verun (Rad	ckte rer)
		GT	SV		GT	SV		GT	SV
Fa	58	0	13	18	1	3	76	1	16
Abbiegen	732	2	94	283	24	82	1.015	26	176
Einbiegen-Kreuzen	1.112	2	186	192	12	62	1.304	14	248
Crossing / Turning Into	0	0	0	0	0	0	0	0	0
	286	1	41	53	1	10	339	2	51
Längsverkehr	280	1	42	82	3	16	362	4	58
Sonstiger Unfall	255	3	38	51	0	11	306	3	49
	$\mathrm{AlC}^{2} \mathrm{Ci}$	nts	414	679	41	184	3.402	50	598

(incl. e.g. Turning Left, Cyclist from wrong direction)

Urban Accidents With Bcl. And Right-Turning Truck

\rightarrow Extrapolation for blind spot for 2012

< 7.5 t GVW > 7.5 t GVW \& Tractors

2012 Hochrechnung (Potenzialabschätzung) Dtld.; innerorts	Fahrrad und Gkz nach zGG mit...								
	<=7,5 t und o.A.			> 7,5 t und Sattelschlepper			Insgesamt		
	U(P)	Verunglückte (Radfahrer)		U(P)	Verunglückte (Radfahrer)		$U(P)$	Verunglückte (Radfahrer)	
		GT	SV		GT	SV		GT	SV
Unfälle zwischen rechtsabbiegenden Gkz und...									
Bicyclists ${ }^{\text {n }}$	408	1	48	232	22	70	640	23	118
edestrians	nicht diff.						55	4	16

3-Digit Accident Type

- 37 Different Turning Situations
- 4 German States:
- Niedersachsen (NI),
- Nordrhein-Westfalen (NW),
- Rheinland Pfalz (RP) und
- Saarland (SL)
\rightarrow near 100 \% knowledge
\rightarrow Approx. $1 / 3$ of German Population
- For 2008 to 2012
\rightarrow sufficient data available

Accident Types

- Turning Right: 86\% GT / 67 \% SV
- Turning Right, Bicycle from rear: 86\% GT / 64\% SV
- Turning Left: 2\% GT / 11\% SV

Differences <7.5t / >7.5t

- Fatally injured: 12\% / 87\%
- Severely injured: 54\% / 46\%
- Turning right: 38\% / 62\%
- Turning right, Bcy from rear:
- >7.5t: 88\% GT, 82\% SV
- <=7.5t: 71\% GT, 51\% SV

Conditions

Abbiege-Unfälle zwischen Gkz und Fahrrad nach 3-stelligen Code
(NI, NW, RP,SL; 2008-2012)

Daylight

- Tageslicht

■ [Dusk/Dawn
\square trocken \square nass/feucht \square winterglatt
Darkness

Summary - Initial Accident Analysis

- Daylight \rightarrow very few night accidents
- Fatally injured: heavy trucks
- Severely injured: both heavy and light trucks
- Dominant accident situation:

Turning right, Bicycle from rear

In depth accident analysis

- German In-Depth Accident Study
- Database of accident research of German insurers (UDV)

Records include sketches, photos, aerial images, reconstruction

Purpose: gain information about

- Road infrastructure
- Obstructions
- Velocities
- Trajectories
- Impact points

In depth accident analysis - results

- Daytime about 90 \%
- 90 \% dry weather
- Truck drivers sight O.K.; obstruction in only 9 \%
- Only 22 \% of the cases after previous halt of the truck
- In 90% of the cases truck did not brake
- In 90% of the cases bicycle moved
- Impact point at frontal part of the truck (up to 6 m towards the rear, see Figure)
- 90 \% of fatalities with trucks above 7.5 t
- Traffic lights do not play any role

In depth accident analysis - results

Speeds:

- Bicycle and truck did not change their speeds during the accident in about two thirds of all cases
- Truck speeds are below $30 \mathrm{~km} / \mathrm{h}$ in more than 90% of all cases
- Bicycle speeds are below $20 \mathrm{~km} / \mathrm{h}$ in more than 80% of all cases

Rough Classification of Scenarios

SYSTEM REQUIREMENTS AND TEST CONCEPT

Last Point of Information LPI

- Stopping distance depends on driver reaction time and deceleration

Reaction time Braking time

- Information should be given at a point when the vehicle driver can still comfortably come to a full stop BEFORE crossing the bicycle line of movement
- This point is the „Last Point of Information" (LPI)

Difference between Warning and Information

- Warning Not Considered for Assistance System
- High intensity
- If issued right, good effects in steering driver's attention
- High annoyance if issued too often \rightarrow risk of deactivation

- Information
- Low intensity
- Low annoyance if issued too often \rightarrow low risk of deactivation
- Lesser effect in steering driver's attention

Difference between Warning and Information

- Warning
- High intensity
- If issued right, good effects in steering driver's attention
- High annoyance if issued too often \rightarrow risk of deactivation
- Information
- Lon as $10 n 9$ as itis insued too o low risk of deactration
- Lesser effect in steering driver's attention

Test Setup

- \underline{L} - Impact location from front of truck
- A - Initial lateral separation of HGV and Bicycle
- \quad R - Turning Radius of HGV

Sketch of relevant parameters

- $V_{\text {Truck }}$:

10 to $20 \mathrm{~km} / \mathrm{h}$

- $\mathrm{V}_{\text {Cycle }}$:
- Lateral separation:

10 to $20 \mathrm{~km} / \mathrm{h}$

- Truck turning radius:
$\mathrm{A}=1.5$ to 4.5 m
- Maximum lateral acceleration:
- Impact location:
$\mathrm{R}=5,10,25 \mathrm{~m}$
$\mathrm{a}_{\mathrm{y}}<3 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{L}=0$ to 6 m
Assumed driver performance (conservative)
- reaction time after driver information:
- Braking performance of driver:

1,4 s
$6 \mathrm{~m} / \mathrm{s}^{2}$

Pass/Fail Criteria (1) - Impact on HGV Front

- Prevent HGV from crossing bicycle path
- Assistance System Information shall be early enough for driver to react
- Last Point of Information (LPI) reflects stopping distance
- Stopping distance results from assumed reaction time and brake deceleration (see slide 9)

$$
\begin{aligned}
T T C_{\mathrm{LPI}} & =t_{\text {Reaction }}+t_{\text {Brake }} \\
& =1.4 \mathrm{~s}+\frac{v_{\mathrm{HGV}}}{2 \cdot 6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}
\end{aligned}
$$

Definition of Test Cases

Original Test Cases

- Information MUST be given at or before Last Point of Information (LPI)
- Exact timing defined by manufacturer
- Tests will simulate at least 8 s before LPI

ID	$\mathrm{v}_{\text {Truck }}[\mathrm{km} / \mathrm{h}]$	$\left.v_{\text {cycle }} \mathrm{km} / \mathrm{h}\right]$	R [m]	Initial lateral separation [m]	Impact location with respect to front of truck [m]
1	10	20	5	1,5	6
2	10	20	10	4,5	6
3	10	20	10	4,5	3
4	10	20	10	1,5	0
5	10	10	5	4,5	0
6	20	10	25	4,5	- Bicycle
7 入	20	20	25	1,5	- before LP

TEST METHOD AND TOOLS

Possible Test Equipment

- Vehicle
- Truck, manually driven, without trailer
- Position estimation: GeneSys DGPS
- Position transmitted to dummy propulsion system
- Dummy
- Standard impactable bicycle dummy
- Draft dummy specs included in Regulation
- Dummy Propulsion
- 4a „Surfboard" commercial Dummy Propulsion
- Synchronisation of triggering time

3 Test Cases: Presentation of Results

- Case 1
$R=5 \mathrm{~m}, \mathrm{~L}=6 \mathrm{~m}$, $\mathrm{A}=1.5 \mathrm{~m}$,
$\mathrm{v}_{\mathrm{HGV}}=10 \mathrm{~km} / \mathrm{h}$, $v_{\text {Bicycle }}=20 \mathrm{~km} / \mathrm{h}$
- Case 4
$\mathrm{R}=10 \mathrm{~m}$, $\mathrm{L}=0 \mathrm{~m}$, $\mathrm{A}=1.5 \mathrm{~m}$, $\mathrm{v}_{\mathrm{HGV}}=10 \mathrm{~km} / \mathrm{h}, \bar{\xi}$ $v_{\text {Bicycle }}=20 \mathrm{~km} / \mathrm{h}$
- Case 6
$\mathrm{R}=25 \mathrm{~m}$, $\mathrm{L}=6 \mathrm{~m}$, $\mathrm{A}=4.5 \mathrm{~m}$,
$\mathrm{v}_{\mathrm{HGV}}=20 \mathrm{~km} / \mathrm{h}$,
$v_{\text {Bicycle }}=10 \mathrm{~km} / \mathrm{h}$

Test Case 6 (Example)

INFLUENCE OF VEHICLE GEOMETRY

Influence of Vehicle Geometry (Example Case2)

Case 2: All positions of single tractor

Case 2: All positions of tractor (driven with trailer)

Case 2: All positions of bus

Case 2: Overview

- Different vehicle types show different cornering styles
- Corridors for test conduction need to be adjusted to take this into account
- \rightarrow Corridors Type A and Type B

Other cases - overview

Speed Accuracy (manual driving)

$20 \mathrm{~km} / \mathrm{h}$ desired speed

$10 \mathrm{~km} / \mathrm{h}$ desired speed

Speed Accuracy (manual driving)

$20 \mathrm{~km} / \mathrm{h}$ desired speed

$10 \mathrm{~km} / \mathrm{h}$ desired speed

OTHER CONSIDERATIONS

False Positive Tests

- System must not react to trees, cones and other road clutter
- Tests will always be carried out using cones
- Information should only be given when approaching the bicycle
- Generic local road sign should be placed
- No information should be given when entering the corridor
- Additionally road sign positioned at entry of corridor

Remaining issues

- Start of bicycle at 4 s before „Last Point of Information" (LPI) not sufficient
- Better: bicycle at speed at least 8 seconds before LPI [included in regulation proposal]
- This means 33 m bicycle at full speed and 9 m acceleration length $=41 \mathrm{~m}$ belt length before impact point
- Requires updates to current propulsion system control software

REGULATION PROPOSAL

Performance Requirements

5.3.1. Whenever the system is active, as specified in paragraph 5.3.1.4. below, the BSIS shall inform the driver about bicycles, travelling initially in parallel to the vehicle on the near side of the vehicle, that would be in conflict if the vehicle would start a turn towards the bicycle line of movement.
5.3.1.1. The information signal shall be given at a time when the vehicle driver would still be able to avoid a collision, taking into account an appropriate reaction time and an achievable brake deceleration.
5.3.1.2. The information signal shall meet the requirements as defined in paragraph 5.4. below.
5.3.1.3. The information signal shall be given independently from the activation of turn signals.
5.3.1.4. The BSIS shall be operative for all forward vehicle speeds between $1 \mathrm{~km} / \mathrm{h}$ and $30 \mathrm{~km} / \mathrm{h}$.
5.3.1.5. The BSIS shall be able to give an information signal for all bicycles moving with a speed between $5 \mathrm{~km} / \mathrm{h}$ and $20 \mathrm{~km} / \mathrm{h}$.
5.3.1.6. The BSIS shall not give an information signal for stationary objects that are not pedestrians or cyclists.
5.3.1.7. The information signal shall be provided in such a timely manner that the accident is avoided, i.e. the vehicle is stopped before crossing the bicycle trajectory, if there was a driver brake application, resulting in $5 \mathrm{~m} / \mathrm{s}^{2}$ brake deceleration, and initiated with a reaction time of $\underline{1.4}$ seconds after the information signal. This shall be tested as specified in paragraph 6.5.

No information signal
at traffic sign or cone Mark colridor using cones *,

Bicycle starting
Bicycle line of movement position

be activated here

$\alpha=\arccos \left(r_{\text {turn }}-d_{\text {lateral }}\right) / r_{\text {turn }}$

Position cone to account for initial swerving if defined in Table 1.
*: Use locally common traffic cones, height not less than 0.4 m
**: dashed or dash-dotted lines are for information only; they should not be marked on the ground within the corridor. They can be marked outside of the corridor.

If not specified, tolerances are $\pm 0.1 \mathrm{~m}$

Regulation Proposal + Trajectories (1)

Regulation Proposal + Trajectories (2)

Test Procedure

6.5.1.Using cones and the bicycle dummy, form a corridor according to Figure 1, Appendix 1 of this document and the additional dimensions as specified in Table 1, Appendix 1 of this Regulation.
6.5.2. Position the bicycle target (as detailed in Annex 3 of this Regulation) at the appropriate starting position as shown in Figure 1, Appendix 1 of this Regulation.
6.5.3.Position a local traffic sign corresponding to sign C14 as defined in the Vienna convention on road signs and signals (speed limit $50 \mathrm{~km} / \mathrm{h}$) or the local sign closest to this sign in meaning on a pole at the entry of the corridor as shown in Figure 1, Appendix 1 of this Regulation.
6.5.4.Drive the vehicle at a speed as shown in Table 1, Appendix 1 of this document with a tolerance of $+/-2 \mathrm{~km} / \mathrm{h}$ through the corridor.
6.5.5. Do not operate the turn lights when initiating the turn towards the bicycle trajectory.
6.5.6. Move the bicycle dummy on a straight line as shown in Figure 1, Appendix 1 of this document in way that the dummy position crosses line A (Figure 1, Appendix 1) with a
tolerance of $+/-0.5 \mathrm{~m}$ at the same time when the vehicle crosses line B (Figure 1, Appendix 1) with a tolerance of $+/-0.5 \mathrm{~m}$ (verify e.g. with video or picture).
Move the dummy in a way that the dummy moves in a steady state for at least 8 seconds, with the speed as shown in Table 1, Appendix 1 of this document with a tolerance of $+/-0.5 \mathrm{~km} / \mathrm{h}$, before reaching the collision point.
6.5.7.Verify that the Blind Spot Information signal has been activated before the vehicle crosses line C, Figure 1, Appendix 1 of this document.
6.5.8.Verify that the Blind Spot Information signal has not been activated when passing the traffic sign and any cones as long as the bicycle dummy is still stationary.

Feedback after GRSG Spring 2017 (1)

- 47. The expert from Germany presented GRSG-112-36 on the development of test procedures for a new draft UN Regulation on Blind Spot Information Systems (BSIS). He reported on the research results, the derivation of test cases and the new technical requirements on the conduction of test for such BSIS. He introduced a proposal for a new draft UN Regulation on BSIS (ECE/TRANS/WP.29/GRSG/2017/11). GRSG welcomed the detailed information and the proposal by Germany.
- 48. The expert from Israel recommended to extent the scope also to categories of vehicles other than N_{2} and N_{3}. He added to even insert provisions on aftermarket BSIS for the purpose of retrofitting vehicles already in service. A number of experts underlined their preference to adopt, in a first step, the new UN Regulation and then to extend the scope in a further stage.

Feedback after GRSG Spring 2017 (2)

- 49. During a first reading of ECE/TRANS/WP.29/GRSG/2017/11, the document received a number of comments on the definitions and cross-references to other UN Regulations. Following the discussion, GRSG agreed that the IWG on VRU-Proxi (see para. 16 above) shall resume consideration of ECE/TRANS/WP.29/GRSG/2017/11 as a first priority at its forthcoming meetings.
- 50. GRSG agreed to, at its next session, have a further review of draft UN Regulation on BSIS and to resume consideration of ECE/TRANS/WP.29/GRSG/2017/11 on the basis of the detailed feedback by the IWG on VRU-Proxi.

