
An Independent Test Procedure for Heavy Goods Vehicle Blind Spot Safety devices

GRSG VRU-Proxi Bast 18th/19th July 2017

What is the problem that needs to be solved?

- Unseen pedestrians & cyclists injured by an HGV manoeuvring at low speed - 'blind spot' collisions. Two main crash mechanisms identified:
 - VRU (mainly pedestrians) killed at front of HGV when it moves off from rest.
 - VRU (mainly cyclists) killed at the side of an HGV when it turns left (right in EU)
- About equally important
- Small number of collisions at offside turning right

Research Programmes

- **Direct Vision Protocol** development
- Sponsored by TfL
- Contractor: TRL/AVS

Blind Spot Safety systems

Sponsored by TfL

6

TRANSPORT

FOR LONDON

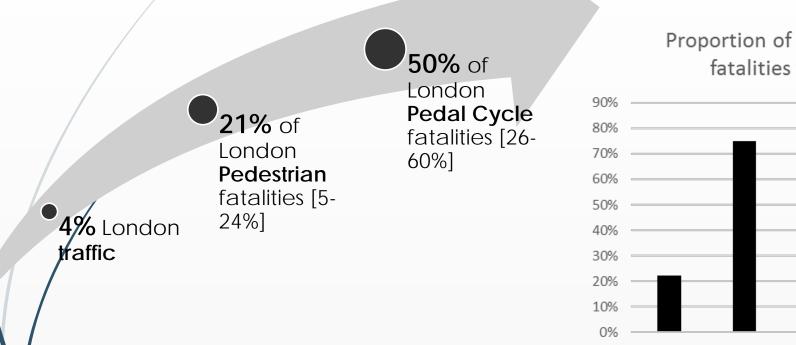
EVERY JOURNEY MATTERS

Contractor: Thatcham Research, LOWCVP, AVS, MIRA

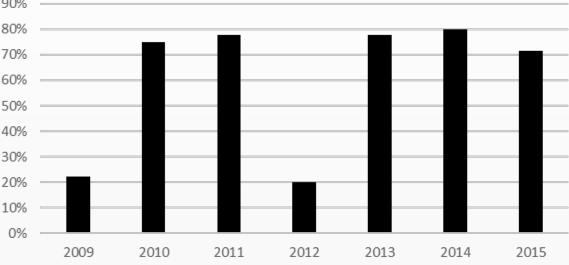
Direct Vision Casualty impact Assessment

- Sponsored by TfL
- Contractor: TRL/AVS

and Consultancy

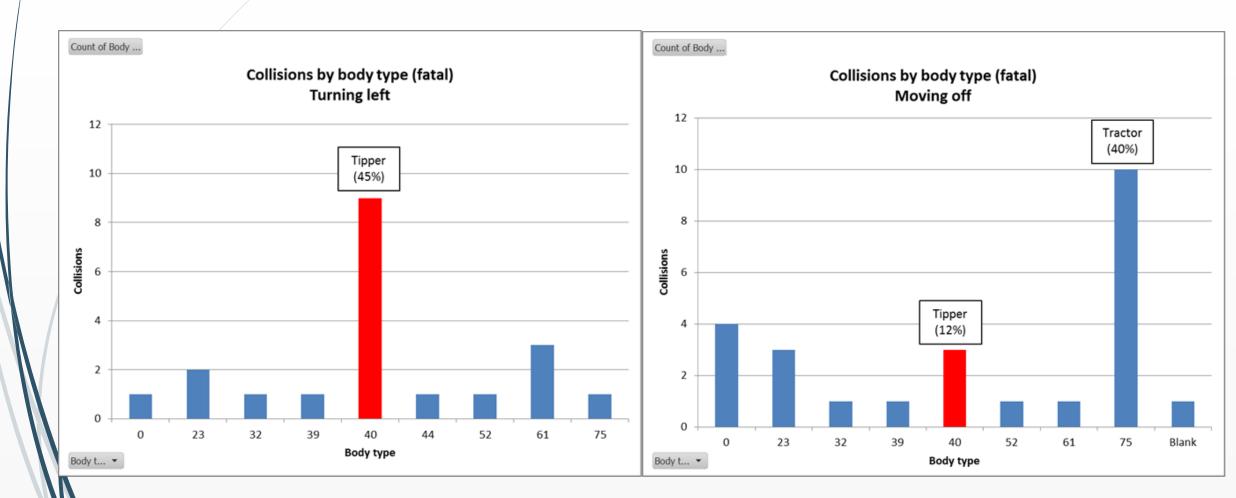

Safety

Vehicle


Vulnerable Road User (VRU) Collisions In London

Collision & vehicle type	Average r fatalities (2005-	per year	 Overall, pedestrians are a larger problem than cyclists Substantial annual variation in
	Pedestrian	Pedal Cyclist	 numbers (pedestrians 4-14; cyclists 2-9) Blind spots are a common contributory
All collision types	82	15	factor, particularly for moving off/
Collision involving HGV>3.5t	11	5.3	 turning left Pedestrian and cyclist approximately
Of which, involving HGV≥7.5†		4.7	 equal in low speed manoeuvre Mis-coding may underestimate: Tfl data suggests average 2 PC +
HGV ≥7.5t 'Moving off from rest'	3	1	2 Ped fatalities/year in collision with construction HGV mis-coded
HGV \geq 7.5t 'Turning left'	1	3	as 'other'
WWN			• +50%!

The Disproportionate Involvement Of HGVs>7.5T and Construction Bodied HGVs



Proportion of HGVs involved in London cyclist fatalities where construction bodied

Note: Averages based on TfL data including miscoded 'others', which is only available for limited years. Ranges based on extremes from standard Stats19 (2005-15) and sample years for TfLs correction of miscoding

Collisions by Body type

Dynamics of Left Turn Collisions

- Both HGV and cycle move off from rest together, HGV Turns left
- Impact point typically nearside front
- c.30% of Cyclist Left turn fatalities (n=18 in-depth fatal cases)
- ALL stopped at lights/give way before impact
- Cyclist moves up inside of stationary HGV at speed. HGV moves off and turns left
- Type 2 Impact point typically nearside front
 - c.40% of Cyclist Left turn fatalities
 - ALL stopped at lights/give way before impact
- 11 /

Type 3

Type 1

- HGV and cycle both moving, sometimes cycle undertaking, sometimes HGV overtaking, low relative speed, HGV Turns left
- Impact point anywhere along full length
- c.30% of Cyclist Left turn fatalities
- None stopped at lights/give way before impact

Source:

Thatcham

Research

sponsored

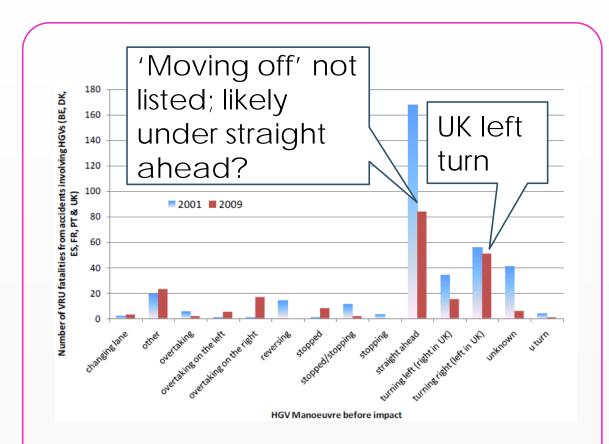
by TfL

Application Outside London

	Collision & vehicle type		of fatalities per year -2014)	
		London Pedestrian	GB Pedestrian	
	All collision types	82	519	
	Collision involving HGV>3.5t	11	62	
/	Of which, involving HGV≥7.5†	9	53	
	HGV ≥7.5t 'Moving off from rest'	3	10	
	$HGV \ge 7.5t$ 'Turning left'	1	3.	London sees 1/3 of relevant
				GB pedestrian collisions

Application Outside London

Collision & vehicle type	Average number o (2005-		-	t happens everywhere, but
	London Pedal Cyclist	GB Pedal C	yclist [ondon suffers more severely, and its not
All collision types	15	121		ust related to high
Collision involving HGV>3.5t	5.3	22		oedal cycle exposure
Of which, involving HGV≥7.5†	4.7	18	PC fataliti	ies from collisions involving HGV per billion PC km
HGV ≥7.5t 'Moving off from rest'	1	2 8 7		
 HGV : London sees 1/2 of relevant GB pedal cyclist collisions 	3	7 5 4 3 2 1 1 0	London GB	Manc Mers SYorks T&W W Mids W yorks


Application Across Europe

- Clear evidence of the turning problem exists across EU
 - c. 20% of HGV-VRU
- Moving off from rest exists but may be less prevalent than UK
 c. 5% of HGV-VRU

Source: Volvo Trucks Safety Report 2017

- Study on revised Truck Front End Design (TFED) for EC DG Grow estimates:
 - 278 fatal
 - 302 670 serious
- Pedestrian/Cyclist EU casualties in move off/turn left collisions

Source: CARE data (2015) combined with literature

Source: CARE data in Knight (2011) assessing retrofit mirrors directive

Application Across Europe: Differences in Left Turn Manoeuvres

UK (Robinson et al, 2016)

- Mostly rigid vehicles
- Often stop at lights prior to collision
- Lateral expected to be small

Germany (Schreck & Seiniger, 2014)

- Mostly articulated vehicles
- Rarely stop before collision
- Lateral separation can be 4m+

Unclear which is representative for EU; shows similar outcomes occur on different infrastructure classes Blind spot sensors: Why was an independent test procedure needed?

Categorising the systems in scope

Field of View Aid

Technically, any system that helps enable a VRU in close proximity to be seen
However, direct vision and blind spot mirrors excluded because dealt with elsewhere

Proximity warning

System that uses sensors to detect the presence of a VRU close to the vehicle and warns the driver
Warning sounds whenever VRU is present irrespective of whether vehicles are on a collision path

Collision warning

Motion Inhibit

• System that uses sensors to assess the trajectories and speeds of both vehicles and warns when it calculates a collision is imminent

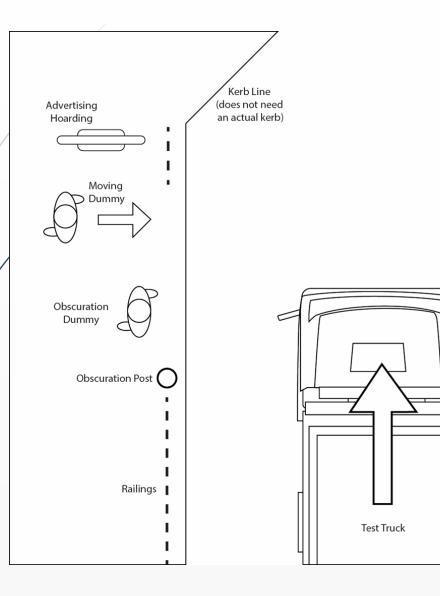
• A system that prevents a vehicle moving off from rest when sensors detect a vulnerable road user in close proximity to the front of the vehicle

Principles guiding design of tests

- Realistic & Representative
 - Road trials representative of normal driving but chances of encountering a collision scenario in short certification test is (fortunately!) very low
 - Design off-road tests that closely represent typical collision scenarios

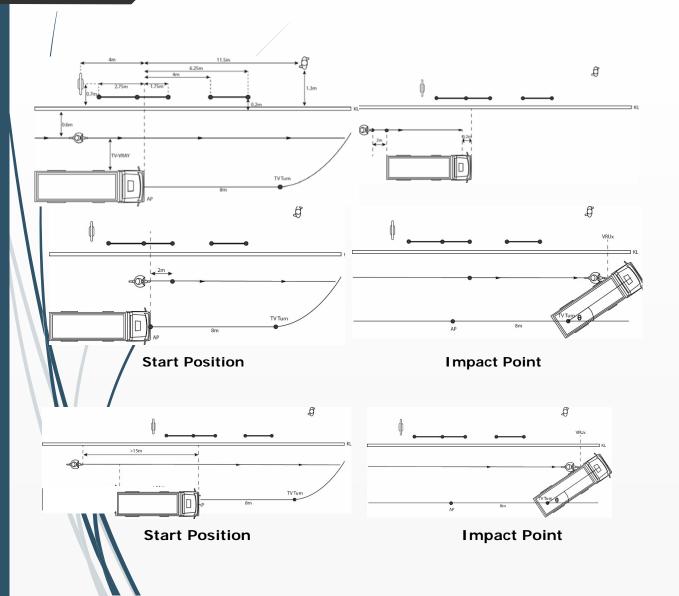
Objective, Repeatable and Reproducible

- Road trials are highly variable, so are humans
- Use measurements, not judgements
- Use robot controlled 'dummies' to simulate humans and apply consistent steering
- Include consideration of HMI and False
 Positive
 - User feedback suggested high levels of driver irritation with some systems leading to disabling of system

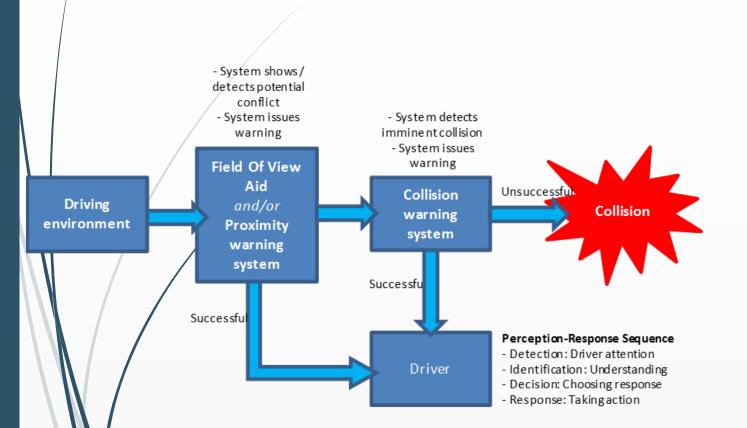

Test scenarios for each safety application

,	Collision		lind spot safe	fety application						
	scenario	Test Method		Proximity warning	Collision Warning	Motion Inhibit				
	Moving Off	Proximity	\checkmark	\checkmark	×	×				
	δ	Collision	×	×	✓	\checkmark				
ired		Detection in presence of clutter	×	✓	×	×				
Required	Left turn	HGV & VRU move off together	\checkmark	~	~	×				
hods		VRU undertaking an HGV	\checkmark	~	✓	×				
Test Methods		False Positive, left turn without VRU	×	~	✓	×				
Tes		False Positive: HGV proceeds straight ahead	×	√	\checkmark	×				
	rsal	Additional HMI	\checkmark	√	\checkmark	\checkmark				
	Universal	Quality, durability, and installation	\checkmark	\checkmark	\checkmark	\checkmark				

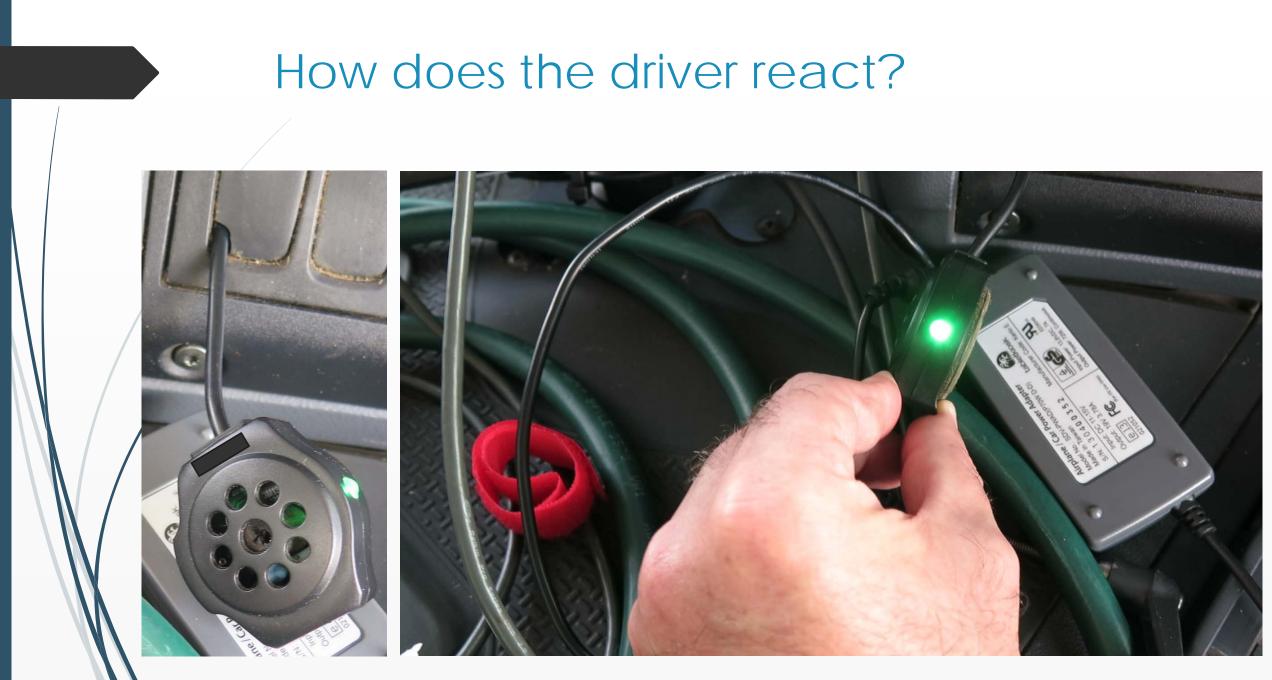
Note: HMI = Human Machine Interface


- Multiple tests and assessments undertaken
- Aim is to encourage
 - Good physical detection capability
 - Ability to separate vulnerable road users from railings, signs etc
 - Minimising false positives
 - Employing good HMI to communicate warnings effectively to driver
- Not all tests applicable to all technologies

Test set up: Moving off from rest


- With Vehicle Stationary aim to detect and warn in response to
 - Adult crossing 0.3m in front
 - Child [3.5m] in front
- Do not respond to
 - Adult [3.5m] in front
 - Any clutter (railings, post hoardings etc)
 - Pedestrian until it moves in direction of vehicle
- With Pedestrian stationary in front of vehicle attempt to move forward
 - Start inhibit marks if cannot move (overrideable)

Test Set-up: Left turn



- Detection in presence of clutter: HGV stationary 0.6m-1.5m away from kerb edged with metal railing. No warning until cyclist moves up inside and then warn
- True Positives: Left turn manoeuvres when moving off together and when cyclist approaching from rear
 - Iateral separation 0.6m-1.5m
 - Test vehicle speed 10 km/h
 - VRU speed 6-18 km/h
- False positive: No warning when vehicle only passes, no turn, or where vehicle turns but no VRU (i.e. do not respond to kerbside clutter/pedestrian)

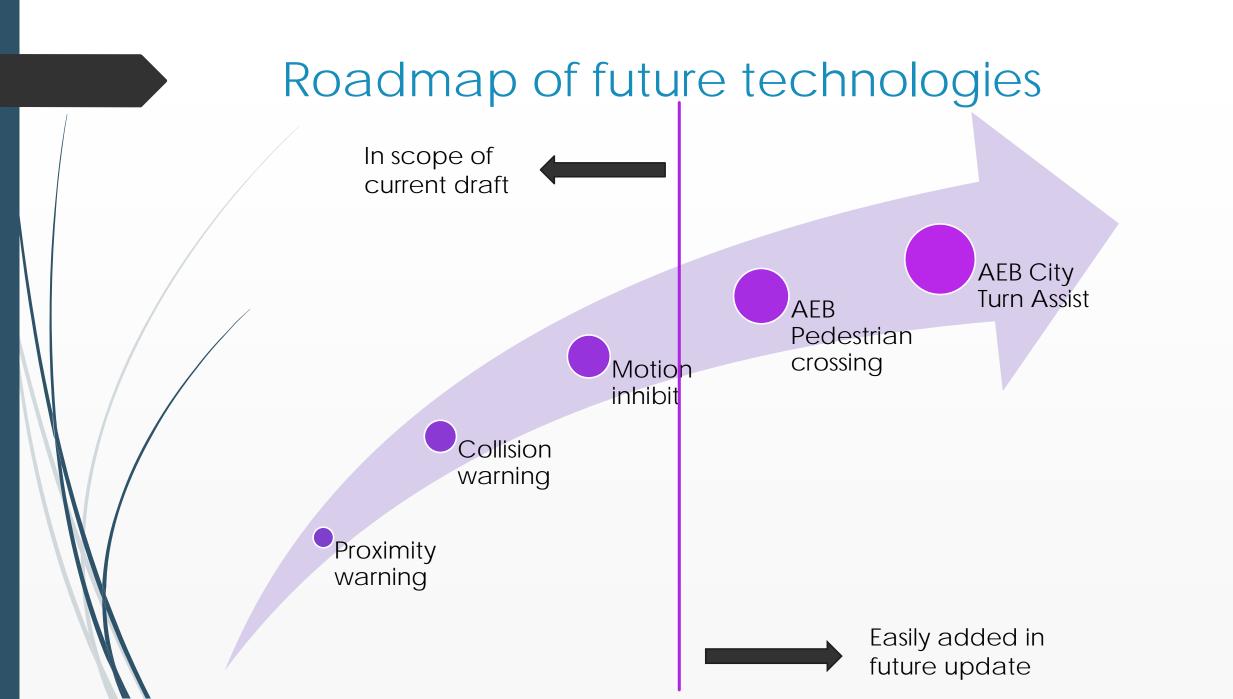
HMI Principles

- Adapted from a range of existing automotive standards (e.g. ISO etc). Should be:
- Noticeable in the driving environment
- Distinguishable from other
 messages
- Indicative of direction of hazard
- Proportional to urgency of hazard
- Timely
- Low nuisance level
- Accepted by users

Example HMI Criteria

Evolution	Dointa	Deput oritoria
Evaluation	Points Available	Result criteria
Proximity warning is issued over a	3	Single mode
single mode only (visual, audible or haptic).	0	Multi-mode
The warning mode for proximity is	1	Visual or speech
visual or speech	0	Tonal or Haptic
Visual proximity warnings are located	1	In zone
within 15 cm of the upper, lower or forward facing edges of the passenger door window forward of the centre of the drivers seat base in its mid-point adjustment, without causing a visual obstruction to direct or indirect vision	0	Out of zone
Visual proximity warnings are amber in	1	Amber
colour	0	Other colour
Speech warnings specify location of VRU	1	Location specified
(front, left side, right side)	0	Not specified
Speech warnings comprise less than 6	1	<6 words and 2s
words and take less than 2 seconds to complete	0	6+ words or 2+s
Collision warnings are issued over more	0	Single mode [0]
than 1 mode	1	Multi-mode [1]
Collision warnings are issued over at least 1 of Audible (Tonal) and Haptic	1	Includes tonal and/or Haptic [1]
modes.	0	Does not include tonal and/or Haptic [0]
Visual collision warnings are located	1	In zone [1]
within 15 cm of the upper, lower or forward facing edges of the passenger door window forward of the centre of	0	Out of zone [0]
the drivers seat base in its mid-point adjustment, without causing a visual obstruction to direct or indirect vision		
Visual collision warnings are red in	1	Red [1]
colour	0	Other colour [0]
Audible tonal warnings have a signal to	1	≥1.3 [1]
ambient ratio of specific loudness spectra greater than 1.3	0	< 1.3 [0]
Max points available	12	Total score
Т	otal Score/To	otal Points Available

Scoring and weighting


Ov	erall	Crash frequency		Test		Category						v	Veighte	ed scor	e						Importance
wei	ghting	weighting	Test	weighting	Category	weighting	1	2	3	4	5	6	7	8	9	10	11	12	13	14	of each test
	90%	53%		55%	Performance	75%	0.05	0	0	0	0	0	0.05	0.1	0	0	0.05	0.2	0.2	0.2	20%
	90%	53%	Moving Off Proximity	55%	HMI	25%	0.04	0.07	0	0	0	0	0.05	0.08	0	0	0.02	0.08	0.08	0.01	7%
	90%	53%		45%	Performance	95%	0	0	0	0	0	0	0	0	0	0	0	0.03	0.2	0.2	20%
	90%	53%	Moving Off Collision	45%	HMI	5%	0	0	0	0	0	0	0	0	0	0	0	0.01	0.01	0	1%
	90%	47%	Left Turn detect in	10%	Performance	75%	0	0	0.01	-0.01	0	0.03	0.01	0.03	0	0	0	0.03	0.03	0.03	3%
	90%	47%	clutter	10%	HMI	25%	0	0	0	0	0	0.01	0	0.01	0	0	0	0.01	0.01	0	1%
	90%	47%	Left Turn move off	30%	Performance	75%	0	0	0.01	0.01	0.02	0.05	0.01	0.05	0	0	0.02	0.05	0.05	0.05	10%
	90%	47%	together	30%	HMI	25%	0	0	0	0	0	0.02	0.01	0.02	0	0.01	0	0.03	0.03	0	3%
	90%	47%	Left Turn Pedal Cycle	40%	Performance	75%	0	0	0.02	0.02	0.03	0.06	0.02	0.06	0	0.06	0.03	0.13	0.13	0.13	13%
	90%	47%	undertake	40%	HMI	25%	0	0	0	0	0	0.03	0.01	0.03	0	0.02	0	0.04	0.04	0	4%
	90%	47%	Left Turn False Positive	10%	Performance	75%	0	0	0	-0.03	-0.03	0	0	0	0	0	-0.03	0	0	0	3%
	90%	47%	No VRU	10%	нмі	25%	0	0	-0.01	-0.01	-0.01	0	-0	0	-0.01	-0.01	-0.01	0	0	-0.01	1%
	90%	47%	Left Turn False Positive	10%	Performance	0%	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0%
	90%	47%	Straight	10%	HMI	100%	0	0	-0.04	-0.03	-0.04	0	-0.01	0	-0.04	-0.03	-0.03	0	0	-0.04	4%
	5%		Quality, Durability		Performance	100%	0.01	0.01	0.02	0.02	0.03	0.05	0.04	0.04	0.05	0.05	0.05	0.04	0.05	0.03	5%
	5%		Additional requirements		нмі	100%	0.01	0.01	0.01	0.01	0.01	0.05	0.01	0.01	0.05	0.01	0.03	0.05	0.05	0	5%
						total	0.1	0.09	0.01	-0.01	0.01	0.3	0.18	0.44	0.04	0.12	0.13	0.7	0.89	0.6	100%
				score %	11%	10%	1%	-1%	1%	33%	20%	48%	5%	13%	15%	76%	97%	65%			

M

Star rating	Rating boundaries	Nominal systems at each rating						
0 Stars	≤10%	2, 3, 4, 5 and 9						
1 Star	>10% and ≤30%	1, 7, 10, and 11						
2 Stars	>30% and ≤50%	6 and 8						
3 Stars	>50% and ≤70%	14						
4 Stars	>70% and ≤90%	12						
5 Stars	>90%	13						

Based mainly on hypothetical systems at this time (2 real systems)

- Distinguishes between current systems but assumes imminent market arrival of OEM systems with greater functions (e.g. Wabco/Mercedes)
- Challenging nature should be subject to review and benchmarking of available and near market systems

Comparing proposals

Proposals are procedurally similar and much in common but....

TFL London

- Best practice rating covering aftermarket progressing to OEM
- Vehicle starting from rest, limited variation in pre-crash speed
- Low/lateral separation (<1.5m)</p>
- Discourage response to inanimate objects & VRUs stationary on kerb
- Encouraging best practice HMI/Warning

Bast Germany

- Regulatory Minimum standard for OEM fit
- Vehicle always moving, wider range of pre-crash speed
- High lateral separation (<4.5m)</p>
- Prohibit response to stationary objects unless they are VRUs
- Little control on HMI/Warning

Conclusions

• Experience with systems in London suggests

- High risk of 'false positives' with simple systems even when sensitive to only <1.5m lateral separation
 - Results in ignoring warnings and/or disabling system via vandalism if necessary
- If systems are required to be sensitive to 4.5m lateral then in London they will detect inside shops in many cases!
- To ensure effectiveness either or both of following may be required
 - Better avoidance of 'false positive' including stationary pedestrian on kerb
 - Correlation of warning urgency/intrusiveness with level of threat presented (e.g. amber visual proximity warning, red audio-visual collision warning
- Need to ensure range of differential speeds and positions fully covers the 'type 2 crash' where HGV moves off from rest at lights while approached at speed from behind by pedal cycle
- In GB a significant minority of VRUs are killed in front of an HGV as it moves off from rest
 - Approximately equal in scale to cyclists in turns (maybe not across all EU?)
 - Could scope be expanded to include a 'moving off' function?