An Independent Test Procedure for Heavy Goods Vehicle Blind Spot Safety devices

GRSG VRU-Proxi Bast 18th/19th July 2017
What is the problem that needs to be solved?

- Unseen pedestrians & cyclists injured by an HGV manoeuvring at low speed - ‘blind spot’ collisions. Two main crash mechanisms identified:
 - VRU (mainly pedestrians) killed at front of HGV when it moves off from rest.
 - VRU (mainly cyclists) killed at the side of an HGV when it turns left (right in EU)
- About equally important
- Small number of collisions at offside turning right
Research Programmes

Direct Vision Protocol development
- Sponsored by TfL
- Contractor: TRL/AVS

Blind Spot Safety systems
- Sponsored by TfL
- Contractor: Thatcham Research, LowCVP, AVS, MIRA

Direct Vision Casualty impact Assessment
- Sponsored by TfL
- Contractor: TRL/AVS
Vulnerable Road User (VRU) Collisions In London

<table>
<thead>
<tr>
<th>Collision & vehicle type</th>
<th>Average number of fatalities per year (2005-2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pedestrian</td>
</tr>
<tr>
<td>All collision types</td>
<td>82</td>
</tr>
<tr>
<td>Collision involving HGV>3.5t</td>
<td>11</td>
</tr>
<tr>
<td>Of which, involving HGV≥7.5t</td>
<td>9</td>
</tr>
<tr>
<td>HGV ≥7.5t ‘Moving off from rest’</td>
<td>3</td>
</tr>
<tr>
<td>HGV ≥ 7.5t ‘Turning left’</td>
<td>1</td>
</tr>
</tbody>
</table>

- Overall, pedestrians are a larger problem than cyclists
- Substantial annual variation in numbers (pedestrians 4-14; cyclists 2-9)
- Blind spots are a common contributory factor, particularly for moving off/turning left
- Pedestrian and cyclist approximately equal in low speed manoeuvre
- Mis-coding may underestimate:
 - TfL data suggests average 2 PC + 2 Ped fatalities/year in collision with construction HGV mis-coded as ‘other’
 - +50%!
The Disproportionate Involvement Of HGVs>7.5T and Construction Bodied HGVs

- 4% London traffic
- 21% of London Pedestrian fatalities [5-24%]
- 50% of London Pedal Cycle fatalities [26-60%]

Note: Averages based on TfL data including miscoded ‘others’, which is only available for limited years. Ranges based on extremes from standard Stats19 (2005-15) and sample years for TfLs correction of miscoding.
Collisions by Body type

Collisions by body type (fatal)
Turning left

Collisions by body type (fatal)
Moving off

Tipper (45%)

Tractor (40%)

Tipper (12%)
Dynamics of Left Turn Collisions

Type 1
- Both HGV and cycle move off from rest together, HGV Turns left
- Impact point typically nearside front
- c.30% of Cyclist Left turn fatalities (n=18 in-depth fatal cases)
- ALL stopped at lights/give way before impact

Type 2
- Cyclist moves up inside of stationary HGV at speed. HGV moves off and turns left
- Impact point typically nearside front
- c.40% of Cyclist Left turn fatalities
- ALL stopped at lights/give way before impact

Type 3
- HGV and cycle both moving, sometimes cycle undertaking, sometimes HGV overtaking, low relative speed, HGV Turns left
- Impact point anywhere along full length
- c.30% of Cyclist Left turn fatalities
- None stopped at lights/give way before impact

Source: Thatcham Research sponsored by TfL
Application Outside London

<table>
<thead>
<tr>
<th>Collision & vehicle type</th>
<th>Average number of fatalities per year (2005-2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>London Pedestrian</td>
</tr>
<tr>
<td>All collision types</td>
<td>82</td>
</tr>
<tr>
<td>Collision involving HGV>3.5t</td>
<td>11</td>
</tr>
<tr>
<td>Of which, involving HGV≥7.5t</td>
<td>9</td>
</tr>
<tr>
<td>HGV ≥7.5t ‘Moving off from rest’</td>
<td>3</td>
</tr>
<tr>
<td>HGV ≥ 7.5t ‘Turning left’</td>
<td>1</td>
</tr>
</tbody>
</table>

- London sees 1/3 of relevant GB pedestrian collisions
It happens everywhere, but London suffers more severely, and it's not just related to high pedal cycle exposure.

Application Outside London

<table>
<thead>
<tr>
<th>Collision & vehicle type</th>
<th>Average number of fatalities per year (2005-2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>London Pedal Cyclist</td>
</tr>
<tr>
<td>All collision types</td>
<td>15</td>
</tr>
<tr>
<td>Collision involving HGV>3.5t</td>
<td>5.3</td>
</tr>
<tr>
<td>Of which, involving HGV≥7.5t</td>
<td>4.7</td>
</tr>
<tr>
<td>HGV ≥7.5t ‘Moving off from rest’</td>
<td>1</td>
</tr>
<tr>
<td>HGV ≥7.5t ‘Turning left’</td>
<td>3</td>
</tr>
</tbody>
</table>

- London sees 1/2 of relevant GB pedal cyclist collisions.
Application Across Europe

- Clear evidence of the turning problem exists across EU
 - c. 20% of HGV-VRU
- Moving off from rest exists but may be less prevalent than UK
 - c. 5% of HGV-VRU

Source: Volvo Trucks Safety Report 2017

- Study on revised Truck Front End Design (TFED) for EC DG Grow estimates:
 - 278 fatal
 - 302 - 670 serious
- Pedestrian/Cyclist EU casualties in move off/tum left collisions

Source: CARE data (2015) combined with literature

'Moving off' not listed; likely under straight ahead?

Source: CARE data in Knight (2011) assessing retrofit mirrors directive
Application Across Europe: Differences in Left Turn Manoeuvres

UK (Robinson et al, 2016)
- Mostly rigid vehicles
- Often stop at lights prior to collision
- Lateral expected to be small

Germany (Schreck & Seiniger, 2014)
- Mostly articulated vehicles
- Rarely stop before collision
- Lateral separation can be 4m+

Unclear which is representative for EU; shows similar outcomes occur on different infrastructure classes.
Blind spot sensors: Why was an independent test procedure needed?

Which has highest casualty reduction potential?
Categorising the systems in scope

Field of View Aid
• Technically, any system that helps enable a VRU in close proximity to be seen.
• However, direct vision and blind spot mirrors excluded because dealt with elsewhere.

Proximity warning
• System that uses sensors to detect the presence of a VRU close to the vehicle and warns the driver.
• Warning sounds whenever VRU is present irrespective of whether vehicles are on a collision path.

Collision warning
• System that uses sensors to assess the trajectories and speeds of both vehicles and warns when it calculates a collision is imminent.

Motion Inhibit
• A system that prevents a vehicle moving off from rest when sensors detect a vulnerable road user in close proximity to the front of the vehicle.
Principles guiding design of tests

- Realistic & Representative
 - Road trials representative of normal driving, but chances of encountering a collision scenario in short certification test is (fortunately!) very low

- Design off-road tests that closely represent typical collision scenarios

- Objective, Repeatable and Reproducible
 - Road trials are highly variable, so are humans
 - Use measurements, not judgements
 - Use robot controlled ‘dummies’ to simulate humans and apply consistent steering

- Include consideration of HMI and False Positive
 - User feedback suggested high levels of driver irritation with some systems leading to disabling of system

Changeable handle bar for Dutch and European bike
White reflector in the front mounted on the frame
Polymer frame with metal layer for radar properties
Plastic mud guard
Real rubber tire with reflecting ring

Materials and properties of bicycle same as Euro NCAP Pedestrian Target
Adjustable torso-ange
Rotational joint of hip connected to bike frame
Rear red reflector mounted on the luggage rack
Rotational joint at the knee point
Rotating wheels due to contact in the ground
Test scenarios for each safety application

<table>
<thead>
<tr>
<th>Collision scenario</th>
<th>Test Method</th>
<th>Blind spot safety application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Field of View Aid</td>
<td>Proximity warning</td>
</tr>
<tr>
<td>Moving Off</td>
<td>Proximity</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Collision</td>
<td>×</td>
</tr>
<tr>
<td>Left turn</td>
<td>Detection in presence of clutter</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>HGV & VRU move off together</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>VRU undertaking an HGV</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>False Positive, left turn without VRU</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>False Positive: HGV proceeds straight ahead</td>
<td>×</td>
</tr>
<tr>
<td>Universal</td>
<td>Additional HMI</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Quality, durability, and installation</td>
<td>✓</td>
</tr>
</tbody>
</table>

Note: HMI = Human Machine Interface

- Multiple tests and assessments undertaken
- Aim is to encourage
 - Good physical detection capability
 - Ability to separate vulnerable road users from railings, signs etc
 - Minimising false positives
 - Employing good HMI to communicate warnings effectively to driver
- Not all tests applicable to all technologies
Test set up: Moving off from rest

- With Vehicle Stationary aim to detect and warn in response to
 - Adult crossing 0.3m in front
 - Child [3.5m] in front
- Do not respond to
 - Adult [3.5m] in front
 - Any clutter (railings, post hoardings etc)
 - Pedestrian until it moves in direction of vehicle
- With Pedestrian stationary in front of vehicle attempt to move forward
 - Start inhibit marks if cannot move (over-rideable)
Test Set-up: Left turn

- Detection in presence of clutter: HGV stationary 0.6m-1.5m away from kerb edged with metal railing. No warning until cyclist moves up inside and then warn.

- True Positives: Left turn manoeuvres when moving off together and when cyclist approaching from rear
 - lateral separation 0.6m-1.5m
 - Test vehicle speed 10 km/h
 - VRU speed 6-18 km/h

- False positive: No warning when vehicle only passes, no turn, or where vehicle turns but no VRU (i.e. do not respond to kerbside clutter/pedestrian)
HMI Principles

- Adapted from a range of existing automotive standards (e.g. ISO etc.). Should be:
 - Noticeable in the driving environment
 - Distinguishable from other messages
 - Indicative of direction of hazard
 - Proportional to urgency of hazard
 - Timely
 - Low nuisance level
 - Accepted by users
How does the driver react?
Example HMI Criteria

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Points Available</th>
<th>Result criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximity warning is issued over a single mode only (visual, audible or haptic).</td>
<td>3 0</td>
<td>Single mode</td>
</tr>
<tr>
<td>The warning mode for proximity is visual or speech</td>
<td>1 0</td>
<td>Visual or speech</td>
</tr>
<tr>
<td>Visual proximity warnings are located within 15 cm of the upper, lower or forward facing edges of the passenger door window forward of the centre of the drivers seat base in its mid-point adjustment, without causing a visual obstruction to direct or indirect vision</td>
<td>1 0</td>
<td>In zone</td>
</tr>
<tr>
<td>Visual proximity warnings are amber in colour</td>
<td>1 0</td>
<td>Amber</td>
</tr>
<tr>
<td>Speech warnings specify location of VRU (front, left side, right side)</td>
<td>1 0</td>
<td>Location specified</td>
</tr>
<tr>
<td>Speech warnings comprise less than 6 words and take less than 2 seconds to complete</td>
<td>1 0</td>
<td><6 words and 2s</td>
</tr>
<tr>
<td>Collision warnings are issued over more than 1 mode</td>
<td>0 1</td>
<td>Single mode [0]</td>
</tr>
<tr>
<td>Collision warnings are issued over at least 1 of Audible (Tonal) and Haptic modes.</td>
<td>1 0</td>
<td>Includes tonal and/or Haptic [1]</td>
</tr>
<tr>
<td>Visual collision warnings are located within 15 cm of the upper, lower or forward facing edges of the passenger door window forward of the centre of the drivers seat base in its mid-point adjustment, without causing a visual obstruction to direct or indirect vision</td>
<td>1 0</td>
<td>In zone [1]</td>
</tr>
<tr>
<td>Visual collision warnings are red in colour</td>
<td>1 0</td>
<td>Red [1]</td>
</tr>
<tr>
<td>Audible tonal warnings have a signal to ambient ratio of specific loudness spectra greater than 1.3</td>
<td>1 0</td>
<td>≥1.3 [1]</td>
</tr>
<tr>
<td>Max points available</td>
<td>12</td>
<td>Total score</td>
</tr>
</tbody>
</table>

Total Score/Total Points Available
Scoring and weighting

- Based mainly on hypothetical systems at this time (2 real systems)
- Distinguishes between current systems but assumes imminent market arrival of OEM systems with greater functions (e.g. Wabco/Mercedes)
- Challenging nature should be subject to review and benchmarking of available and near market systems

Star rating

<table>
<thead>
<tr>
<th>Star rating</th>
<th>Rating boundaries</th>
<th>Nominal systems at each rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Stars</td>
<td>≤10%</td>
<td>2, 3, 4, 5 and 9</td>
</tr>
<tr>
<td>1 Star</td>
<td>>10% and ≤30%</td>
<td>1, 7, 10, and 11</td>
</tr>
<tr>
<td>2 Stars</td>
<td>>30% and ≤50%</td>
<td>6 and 8</td>
</tr>
<tr>
<td>3 Stars</td>
<td>>50% and ≤70%</td>
<td>14</td>
</tr>
<tr>
<td>4 Stars</td>
<td>>70% and ≤90%</td>
<td>12</td>
</tr>
<tr>
<td>5 Stars</td>
<td>>90%</td>
<td>13</td>
</tr>
</tbody>
</table>
Roadmap of future technologies

- Proximity warning
- Collision warning
- Motion inhibit
- AEB Pedestrian crossing
- AEB City Turn Assist

In scope of current draft

Easily added in future update
Comparing proposals

Proposals are procedurally similar and much in common but...

TFL London
- Best practice rating covering aftermarket progressing to OEM
- Vehicle starting from rest, limited variation in pre-crash speed
- Low lateral separation (<1.5m)
- Discourage response to inanimate objects & VRUs stationary on kerb
- Encouraging best practice HMI/Warning

Bast Germany
- Regulatory Minimum standard for OEM fit
- Vehicle always moving, wider range of pre-crash speed
- High lateral separation (<4.5m)
- Prohibit response to stationary objects unless they are VRUs
- Little control on HMI/Warning
Conclusions

- Experience with systems in London suggests
 - High risk of ‘false positives’ with simple systems even when sensitive to only <1.5m lateral separation
 - Results in ignoring warnings and/or disabling system via vandalism if necessary
 - If systems are required to be sensitive to 4.5m lateral then in London they will detect inside shops in many cases!
 - To ensure effectiveness either or both of following may be required
 - Better avoidance of ‘false positive’ including stationary pedestrian on kerb
 - Correlation of warning urgency/intrusiveness with level of threat presented (e.g. amber visual proximity warning, red audio-visual collision warning)

- Need to ensure range of differential speeds and positions fully covers the ‘type 2 crash’ where HGV moves off from rest at lights while approached at speed from behind by pedal cycle

- In GB a significant minority of VRUs are killed in front of an HGV as it moves off from rest
 - Approximately equal in scale to cyclists in turns (maybe not across all EU?)
 - Could scope be expanded to include a ‘moving off’ function?