Flammability, toxicity and corrosiveness of vented gas

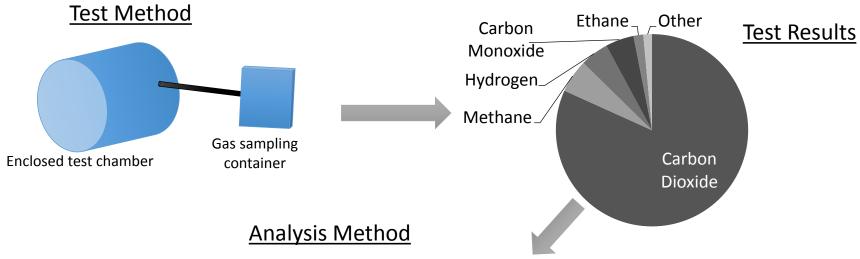
Galen Ressler General Motors Company

EVS GTR IWG Session #14 September 2017

Principles

- Any proposed limit values should be based on applicable, recognized, international, expert consensus values
- Recognize realities of vent gas behaviors
 - Lithium ion battery vent gases are visible (i.e., "smoke") even though certain constituents may be colorless
 - Type of venting strongly influences vent gas content
 - Low temperature electrolyte vapor
 - Higher temperatures products of combustion/partial combustion (proportions vary by temperature and failure mode)

An Evaluation Approach


- Used as internal evaluation method
 - Not suitable in current form as possible regulatory methodology
 - Shared for informational purposes to encourage discussion and investigation

- Requires significant assumptions
 - Detected gases are the only ones of interest
 - Perfect mixing and dispersion within enclosed passenger compartment

System / vehicle effects evaluated

- Induce single cell venting
- Collect and analyze gas content and quantity
- Estimate pack-level behavior (i.e., number of cells venting within what time period)
- Scale gas quantities to estimated pack-level outcomes
- Criteria: Does amount of vent gas exceed allowable levels?
 - Predicted number of cells venting x amount of gas/cell
 - > or < Allowable level
 - Example allowable level: AEGL-2, 10 minute limit

Vent gas assessment method

	Gas properties						Vehicle	Garage	Criteria			Vehicle*	Garage*	Gas Mixture Calculation		
Chemical Species	ρ (NTP)	units	molar mass (g/mol)		units		mg/m^3	mg/m^3	min (ppm)	AEGL 2 for 10 min (mg/m^3)	LFL by	Cells required to surpass AEGL limit (ppm)	Cells required to surpass AEGL limit (ppm)	Volume of gas emitted (L)	% vol fraction (xi) of gas emitted	xi/LFLi
Hydrogen Fluoride	0.991	g/L	20.06		mg	0			95	83.7						
H2	0.0813	kg/m^3			ml	0					4%					0.00
CO2	1.842	kg/m^3			ml	0										
co	1.165	kg/m^3	28.01		ml	0			420		12%					0.00
Phosphine (PH3):	1.379	kg/m^3	34		ug	0			4	5.99	1.79%					0.00
Formaldehyde:	1090	kg/m^3			ug	0			14	18.5	7.0%					0.00
Acetaldehyde:	956	kg/m^3	44.053		ug	0			340	659	4.0%					0.00
Propionaldehyde:	805	kg/m^3	58.079		ug	0			330	844	2.9%					0.00
Butyraldehyde:	800				ug	0					2.5%					0.00
Valeraldehyde:	810	kg/m/3	86.132		ug	0					2.1%					0.00
Methane (CH4):	0.668	kg/m^3			ml	0					5.0%					0.00
Ethane (C2H6):	1.264	kg/m^3			ml	0					3.0%					0.00
Ethylene (C2H4):	1.138	kg/m^3	28.05		ml	0					2.75%					0.00
Propane (C3H8):	1.882	kg/m^3	44.09		ml	0			17000		2.1%	1				0.00
Propene/Propylene (C3H6):	1.748	kg/m^3	1.748		ml	0					2.0%	1				0.00
n-Butane (C4H10):	2.489	kg/m^3	58.1		ml	0			24000		1.86%	1				0.00

Challenges

- Gas collection and analysis
 - Temperature changes condensation, volume
 - Continued reactions after collection
 - Volume estimation ideal gas law?
 - Aerosol effects (electrolyte)
 - What to look for (gases expected impact methods used)
- Accounting for variation in gas species and amounts
 - Test to test
 - "Type" of venting
- Limits and criteria
 - Source
 - Limits for "obscure" chemicals

<u>Example Limit Value Source</u> Acute Exposure Guideline Levels (AEGL)

- Initiated by U.S. National Academies
- Published by U.S. Environmental Protection Agency (https://www.epa.gov/aegl)
- The objectives of the process are:
 - Development of scientifically valid AEGL values for use in chemical emergency planning, prevention and response programs.
 - Comprehensive identification of published and unpublished information sources used to set AEGLs.
 - Sharing resource burdens by stakeholder members.
 - Adoption of consistent emergency planning both domestically and internationally.
 - Transparency of program methods (Standard Operating Procedures or SOPs) and information through public participation at meetings and by commenting on Federal Register notices.
 - Inclusion of National Academies (formerly National Academy of Science [NAS]) as the final peer reviewer of AEGL values and methods.

Acute Exposure Guideline Levels (AEGL)

- Currently have values for 272 chemicals
 - Final: 176
 - Interim: 84
 - Proposed: 12
- Structure of Limits
 - Up to 15 different levels
 - Effects:
 - Level 1: Notable discomfort, irritation, or certain asymptomatic non-sensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.
 - Level 2: Irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
 - Level 3: Life-threatening health effects or death.
 - Exposure Times:
 - 10 min, 30 min, 60 min, 4 hr, 8 hr