
FCV Activities in China

He Yuntang CATARC

Contents

- **1. Test Facilities and capability**
- 2. Codes and Standards Development
- **3. Research Projects**

1.1 FC stack / FCE

(CINTIN RC

1.2 refueling etc

中国汽车技术研究中心

1.3 public service for FCVs

1.4 FCV safety

CNTNRC 中国汽车技术研究中心

1.5 Material Test with Ultra-high Pressure Hydrogen

1st Generation of HyMTS

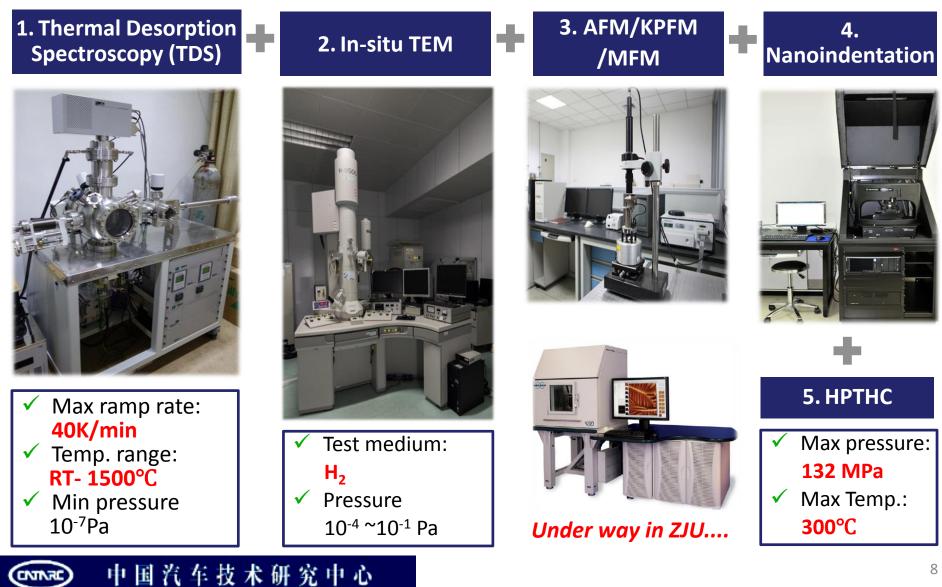
Max pressure: 140MPa Force: 120kN (static) 100kN (dynamic)

Tests: Fatigue Test \checkmark Slow Strain Rate tensile Fatigue crack growth rate test

无氢 含氢 无氢 含氢 (b) 40MPa (a) 10MPa 无氢 含氢 无氢 含氢 (c) 100MPa (d) 140MPa

HP hydrogen combination seal simulation model

Key components


Ce: IZUKIN (Static)				
100kN (dynamic) ts: Fatigue Test w Strain Rate tensile igue crack growth st	Unit	P / MPa	т / °С	On-off way
	ZJU	140	-60~100	Quick opening structure of teeth-mashing
中国汽车技术研究	花中 心	-		

2nd Generation of HyMTS

●●PROTECTED 関係者外秘

CINTINAC

1.6 Material Tests for Hydrogen Embrittlement

●●PROTECTED 関係者外秘

1.7 Component test system with HP H2 (HyCTS)

Hydrogen Cycling System

Test system and interactive interface 中国汽车技术研究中心

- ✓ Test medium: H₂
- ✓ Max pressure: 90MPa
- ✓ Test temp.: -40°C~90°C
- ✓ Application:

Components in contact with HP. Eg: check valve, shut-off valve, PRD etc.

Test objects and components 9

• PROTECTED 関係者外秘 2. Codes and Standards Development

National Standardization Technical Committee

- ✓ National Standardization Technical Committee of Hydrogen Energy (SAC/TC 309)
- National Standardization Technical Committee of Gas Cylinders (SAC/TC 31) (Subcommittee on High pressure vehicle fuel tank, SAC/TC 31/SC8)
- ✓ National Standardization Technical Committee of Automotive Vehicle (SAC/TC 114)
- ✓ National Standardization Technical Committee of Boiler & Pressure Vessels (SAC/TC 262)

• PROTECTED 関係者外秘 2. Codes and Standards Development

National Standard

✓ FCVs

No	Std No	Title
1	GB/T 24549-2009	FCV safety requirements
2	GB/T 24554-2009	FCE Perfarmance test methods
3	GB/T 26779-2011	FCV refueling nazzle
4	GB/T 26990-2011	FCV onboard H2 sys specification
5	GB/T 29126-2012	FCV onboard H2 sys test method
6	GB/T 24548-2009	FCV terminology
7	GB/T 26991-2011	FCV max speed test method
8	GB/T 29123-2012	FCV for demo-running
9	GB/T 29124-2012	Infrastrucutre for FCV
10	QC/T 816-2009	H2 refueling Vehicle
11	GB/T 25319-2010	FCV FC-power sys specification
12	GB/T 23645-2009	FCV FC-power sys test method
Note:	mandatory use	

The 1st Informal Wo 2. Codes and Standards Development

National Standard

✓ FCVs

No	Std No	Title
1	GB/T	FCV H2 consumption
2	GB/T	FCV H2 emission
3	GB/T	FCV stacks test method
4	GB/T	FCV refueling protocol
5	GB/T	FCV tyep approval procedure
6	GB/T	FCV energy consumption and range
7	GB/T	FCE durability accelerated test

•• PROTECTED 関係者外秘 2. Codes and Standards Development

National Standard

- ✓ Stationary hydrogen storage and hydrogen refuelling station
 - > TSG 21-2016 Supervision Regulation on Safety Technology for Stationary Pressure Vessel
 - > GB/T 26466 Stationary flat steel ribbon wound vessels for storage of high pressure hydrogen
 - > GB50516 Technical code for hydrogen fueling station
 - > GB/T30718 Compressed hydrogen refuelling connection devices for surface vehicle
 - > GB/T 34019 Ultra-high Pressure Vessels
 - > GB/T XXX Storage and transportation systems for gaseous hydrogen Part 1: General requirements

•• PROTECTED 関係者外秘 2. Codes and Standards Development

National Standard

✓ On-board hydrogen storage system

- > TSG R0006-2014 Supervision Regulation on Safety Technology for Gas Cylinders
- > GB/T 29126 Fuel cell electric vehicles On-board hydrogen system-Test methods
- GB/T XXX Fully-wrapped carbon fiber reinforced cylinders with an aluminum liner for on-board storage of compressed hydrogen gas as a fuel for land vehicles

•• PROTECTED 関係者外秘 2. Codes and Standards Development

National Standard

✓ Hydrogen safety and hydrogen compatibility

- > GB/T 29729 Essential safety requirements for hydrogen systems
- > GB/T31139 Safety technical regulation for mobile hydrogen refuelling facility
- > GB/T XXX Safety technical requirements for hydrogen storage devices used in hydrogen station
- > GB/T XXX Test methods for evaluating metallic material compatibility in compressed hydrogen
- > GB/T XXX Test method of hydrogen embrittlement for metallic materials

•• PROTECTED 関係者外秘 3. Research Projects

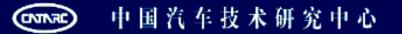
✓ IPHE: Type IV COPV Round Robin Testing, Round Robin for Materials qualification for Hydrogen Service

✓ International Conference: ICHS, ICH2P2016, ASME PVPC CS-34

- ✓ HySafe: State-of-the-Art and Research Priorities in the Hydrogen Safety
- ✓ International Regulations and Standards

• PROTECTED 関係者外秘 3. Research Projects

Research on Design and Fabrication of Components in Contact


With High Pressure Gaseous Hydrogen (2015CB057600)

Tasks:

- (1) Evaluation of Hydrogen Compatibility for Industrial Materials
- (2) Degradation Mechanisms of Materials in Contact With High Pressure Gaseous Hydrogen
- (3) Effects of Fabrication Technology on Component Hydrogen Suitability
- (4) Hydrogen-damage Mechanism Based Methods for Design of Components
- (5) Provide Data for Standards and Technology Applied to Components for Hydrogen Service (Standards for Materials, Components, Systems)

THANKS !

HE Yuntang China Automotive Technology & Research Center (CATARC) heyuntang@catarc.ac.cn 0086-13602053369 www.catarc.ac.cn

