#5 ASEP IWG Report of measurement

2017.11 JASIC

1

Contents

- Result of measurement
- Findings during measurement and analysis

Summary

Measurements were performed in order to create following Sound Model

The "Prediction Model" for the Tyre Rolling Sound $L_{TR,NL} = Slope_{TR} * LOG_{10}(V_{test} / 50) + L_{REF,TR}$

2

The "Prediction Model" for the Power Train (No Load) $L_{pt,NL} = Slopept,NL * LOG_{10}(N_{test} + N_{shift}) / (N_{wot,ref} + N_{shift})) + L_{REF,NL}$

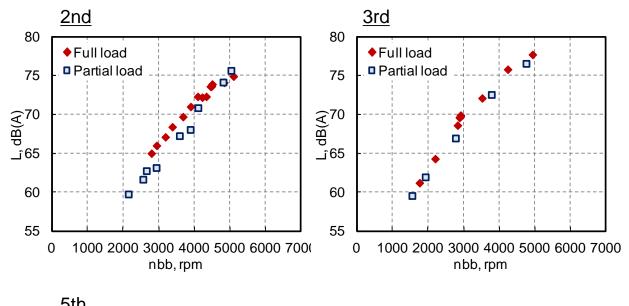
The Dynamic Model

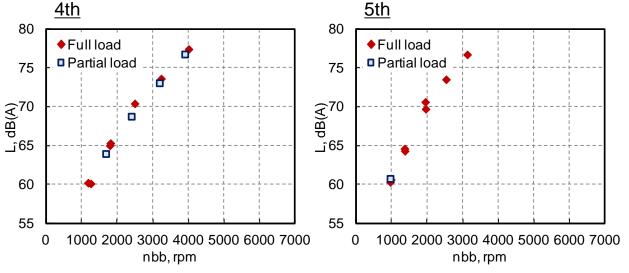
 $L_{PT,FL} = slope * LOG_{10}(n_{test} + n_{shift}) / (n_{wot,ref} + n_{shift})) + L_{REF, FL} + \Delta L_{partial}$

Overview of tested conditions

Following measurements were performed according to Test Program (ASEP-04-05 Rev.1) (for blanks, measurements were not made)

Test vehicle				Vehicle-A (5MT)		Vehicle-B (5MT)		Vehicle-C (5MT)
	Category		M1		N1		N1	
	Displacement		1240 cc		658 cc		658 cc	
Spec.	Max. Power		66 kW / 5600 rpm		37 kW / 5700 rpm		35 kW / 5500 rpm	
	mro			1145 kg		845 kg		845 kg
	PMR		65.0		43.8		41.4	
	Tyre size			165/70R14		145R12-6PR LT		145R12-6PR LT
R51-03 Annex 3			3	3rd, 50km/h		4th, 50 km/h		
Acceleratio n		1st	FL	exceeding the rated engine speed, S		— No valid data by — _ exceeding the rated		_
			PL					
		2nd	FL	9-66 km/h	2.0-2.2 m/s ²	engine speed, S		
			PL	9-65 km/h	0.5-1.6 m/s ²			
		3rd	FL	19-94 km/h	1.2-1.4 m/s ²	7-55 km/h	1.6-1.9 m/s ²	Vehicle-C could not be measured.
			PL	30-91 km/h	0.4-0.9 m/s ²	6-55 km/h	0.5-1.5 m/s ²	
		4th	FL	22-103 km/h	0.8-0.9 m/s ²	25-82 km/h	0.9-1.1 m/s ²	
			PL	40-101 km/h	0.4-0.5 m/s ²	27-81 km/h	0.4-0.9 m/s ²	
		5th	FL	25-101 km/h	0.5-0.6 m/s ²	27-100 km/h	0.4-0.8 m/s ²	
			PL	25-31 km/h	0.5 m/s²	28-71 km/h	0.4-0.6 m/s ²	
Tyre ro	olling N — 20-115 km/h		21-104 km/h		19-93 km/h			
Stationary		Ν	NL	850-5600 rpm		800-5700 rpm		900-5500 rpm

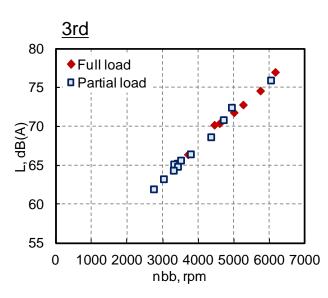

*FL: Full load (wot), PL: Partial load, NL: No load

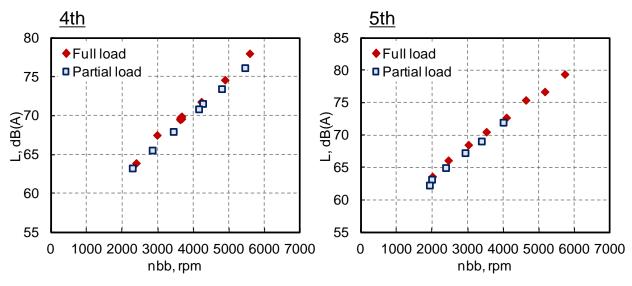

Example of test results

Vehicle-A, Acceleration sound

<u>1st</u>

Test was not performed in 1st gear because the engine speed exceed the rated speed, S.

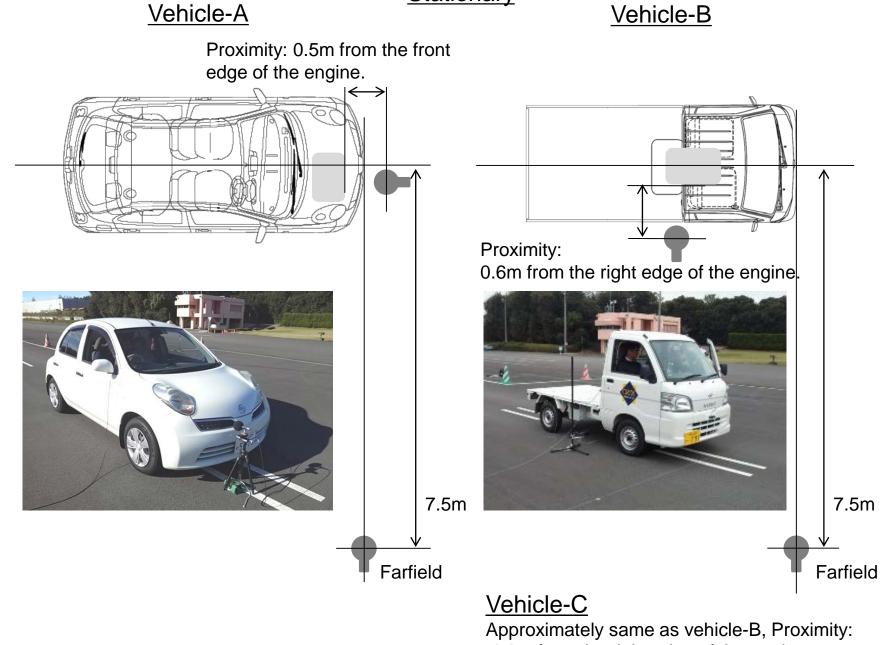

Example of test results

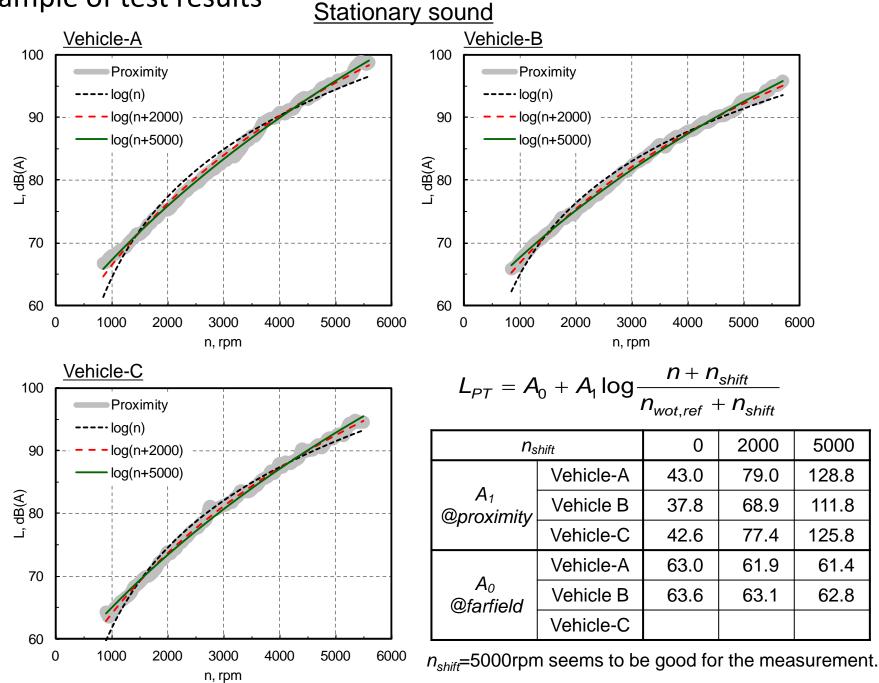

Vehicle-B, Acceleration

<u>1st</u>

<u>2nd</u>

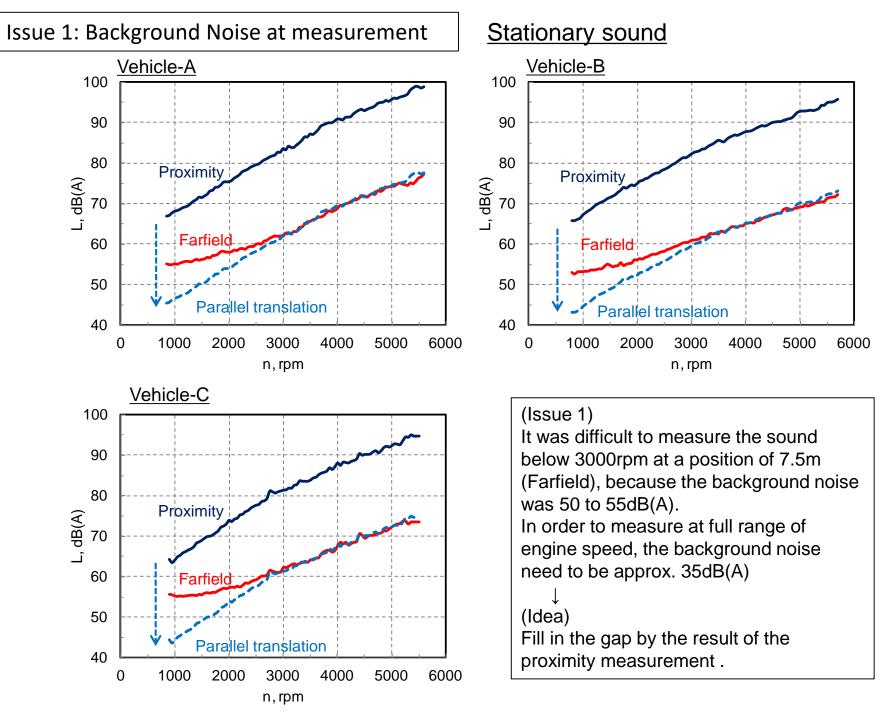
Test was not performed in 1st and 2nd gear because the engine speed exceed the rated speed, S.

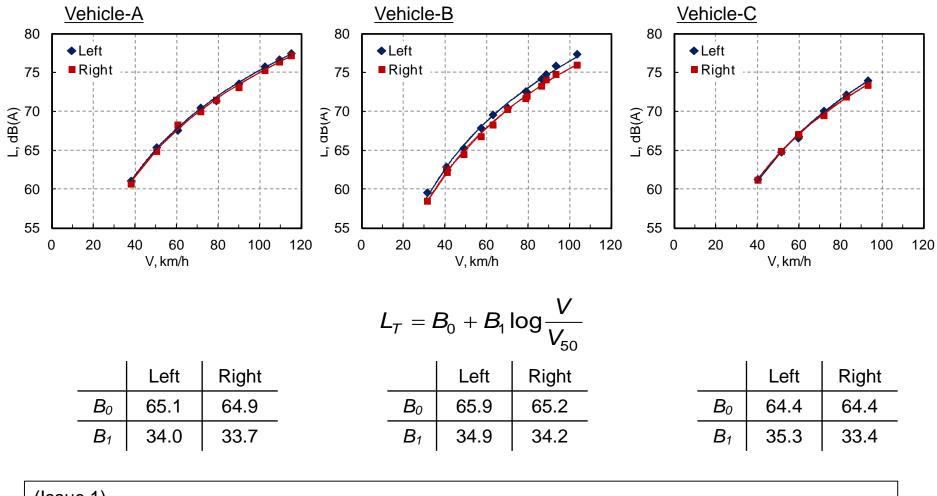



Stationary

Vehicle-B

1.0m from the right edge of the engine


Example of test results


Contents

- Result of measurement
- Findings during measurement and analysis

Summary

Tyre rolling sound

(Issue 1)

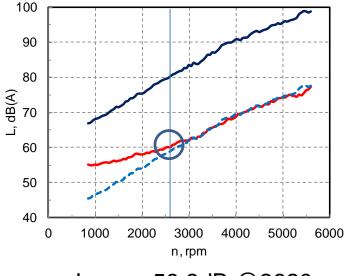
It was difficult to measure the sound below 30 km/h because the background noise were 50 to 55dB(A) ↓
(Idea)
If B1 is appropriate value, extrapolation of regression results of 40 km / h or more.

Issue 2 LREF,TR の決定方法

The "Prediction Model" for the Tyre Rolling Sound

LTR,NL = Slopetr * LOG10(Vtest / 50) + LREF,TR

 $\star L_{\text{REF,TR}} = 10 * LOG_{10} (10_{(x\%^{L_{crs,rep}/10)}})$


[* - : 騒音レベルのエネルギ計算]

 $L_{REF,TR} = L_{crs,rep} \bigcirc No load power train sound at 50km/h$

Lcrs,rep = 66.4 dBLPT,NL = 59.3 dBLREF,TR = Lcrs,rep \bigcirc LPT,NL = $66.4 \bigcirc 59.3$ = 65.5 dB (x= 81.3%)

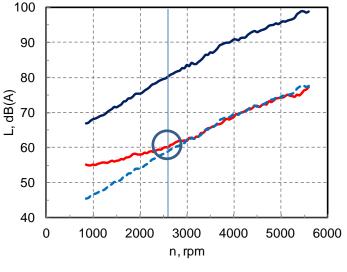
Or LREF,TR = tire noise at coasting at 50km/h

> $L_{REF,TR} = Tire rolling noise at 50km/h)$ = 65.1 dB (x=74.1%)

Lpt, NL=59.3dB @2620rpm

Issue 3 LREF,NL の決定方法

The "Prediction Model" for the Power Train (No Load)

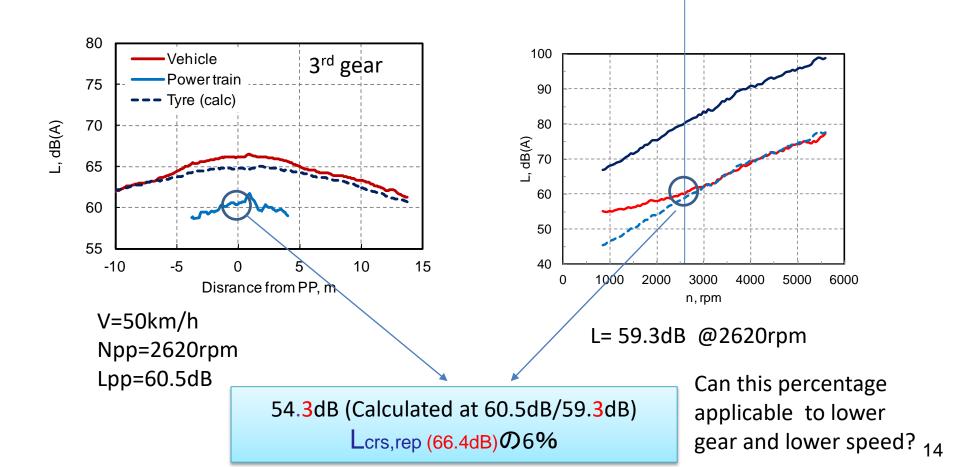

Lpt,NL = Slopept,NL * LOG10(Ntest + Nshift) / (Nwot,ref + Nshift)) + LREF,NL

LREF,NL = No load power train sound at 50km/h

59.3 dB from the data 19% of Lcrs,rep (66.4dB)

Or $L_{\text{REF,NL}} = 10 * LOG_{10} (10_{((100\%-x\%)*Lcrs,rep/10)})$

> 19% Lcrs,rep x= 81% or 26% Lcrs,rep x=74%



Lpt, NL=59.3dB @2620rpm

Confirmation of the influence for gas flow noise (power train noise with load) "In addition, a small correction for the gas flow is necessary." According to OICA presentation material in ASEP#4

Increment of the Power Train Noise Traction at constant speed

= Power Train Noise at constant speed \bigcirc Power Train Noise at no loaded condition

1 The "Prediction Model" for the **Tyre Rolling Sound** LTR,NL = Slopetr * LOG10(Vtest / 50) + LREF,TR

 $\star L_{\text{REF,TR}} = 10 * LOG_{10} (10_{(x\%^{L_{crs,rep}/10)}})$

2

LREF,TR = Lcrs,rep \bigcirc No load power train sound at 50km/hOr(X= 81.3%)LREF,TR = tire noise at coasting at 50km/h(x=74.1%)

LREF,NL = No load power train sound at 50km/h 19% of Lcrs,rep Or LREF,NL = $10 * LOG_{10}(10((100\%-x\%)*Lcrs,rep/10)))$ 19% x= 81% or 26% x=74%

Without consideration of gas flow noise

 The Dynamic Model
 (How to subtract the tyre sound from the vehicle sound)

 LPT,FL = Slope * LOG10($n_{test} + n_{shift}$) / ($n_{wot,ref} + n_{shift}$)) + LREF, FL + Δ Lpartial

 Option1

 LPT,FL = Lwot,test \bigcirc LTR,NL \bigcirc Lpt,NL

LTR,NL , Lpt,NL need to be obtained first.

Option2 LPT,FL = Lwot,test \bigcirc Lcrs,test \bigoplus ncrease of Power Train Sound Traction at constant speed

Measurement of Lcrs is required but for LTR,NL, LPT, NL. Use the fixed value (x% of Lcrs) for Increase of Power Train Sound Traction at constant speed, or omit this because the effect is small.

Summary

Followings need to be determined for the future analysis

Check points for the Measurement

Issue 1: Background Noise at Measurement

Fill in the Gap by the result of the proximity measurement for PT-NL measurement.

Accept extrapolation of the data measured at lower speed for tyre sound measurement.

Procedure for the analysis (Is Japanese way acceptable?)

Issue 2: Determination of LREF, TR

Issue 3: Determination of LREF, NL

Issue 4: Procedure to obtain the Power Unit Related Noise LPT