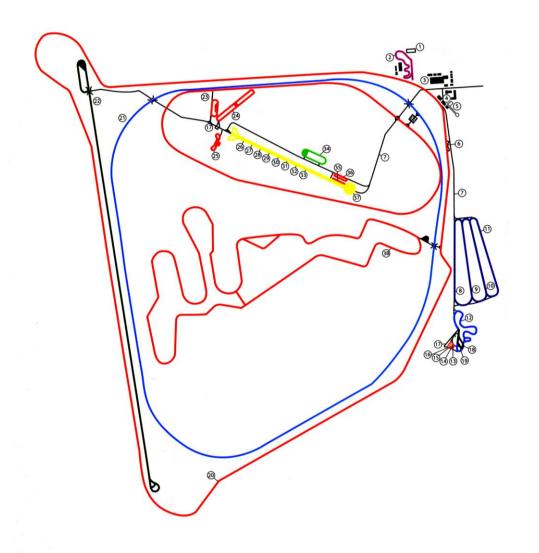
Investigations to assess the impact of test and operation of ventilation system modes on pollutant concentrations in vehicle interior air


Zinaida Bulycheva NICIAMT FSUE NAMI

z.bulycheva@autorc.ru

Testing Centre

The study was carried out on the Central scientific research automobile and automotive engine institute (NAMI) in it's Testing Centre - Dmitrov proving ground

The list of test roads:

- 1. Dinamometric road with length of 5,2 km. (22)
- 2. High-speed road with length of 14 km. (21)
- 3. Open areas in front of the dynamometer and high-speed roads.

The important stipulation:

There should not be other vehicles during the whole test in the vicinity of test vehicle.

Data of testing

5 - 25 October 2017

Test modes

- A.1. Movement at constant speed 50 km/h
- A.2. Movement at constant speed 90 km/h
- A.3. Movement at constant speed 110 km/h
- A.4. Movement at constant speed 130 km/h
- A.5. Idling
- A.6. Acceleration from a speed of 60 km/h at WOT to a speed of 130 km/h and a free coasting down to a speed of 60 km/h

On each of the driving and idling modes, the measurements of the pollutants were made during the performances of the following operating modes of the ventilation and recirculation systems

Operation modes of the ventilation and recirculation systems during tests

- B.1 Recirculation and fresh air ventilation system switched off
- B.2 Recirculation switched on, fresh air ventilation system switched off
- B.3 Recirculation switched on, blower fan switched on in the minimum position
- B.4 Recirculation switched on, blower fan switched on in the middle position
- B.5 Recirculation switched on, blower fan switched on in the maximum position
- B.6 Recirculation switched off, fresh air ventilation system switched on, blower fan switched on in the minimum position
- B.7 Recirculation switched off, fresh air ventilation system switched on, blower fan switched on in the middle position
- B.8 Recirculation switched off, fresh air ventilation system switched on, blower fan switched on in the maximum position

The list of tested vehicles

Test car	Engine	Mileage before	Type of
number	type	testing, km	gearbox
1	gasoline	6450	manual
2	gasoline	35600	automatic
3	gasoline	29650	manual
4	diesel	8800	automatic
5	diesel	21000	manual

Test equipment

Next pollutants: NO, NO₂, CO and aromatic hydrocarbons in terms of benzene have been determined in the interior air of tested vehicles. All equipment were working in express regime (on-line measurement).

Technical data of test equipment

Equipment, model, type of detector	Purpose of equipment	Limits, mg/m3	Minimal value measurable concentra-tions, mg/m³	Error of measure- ments, %	Range of measurable concentrations, mg/m³	Date of verification
Gas analyzer "Kolion 1B" with photo-ionization	Determination of aromatic hydrocarbons	0,3 for benzene 0,6 for	0,01	γ-± 15	0 – 10	30.06.2017
detector	in terms of benzene	methylbenzene (toluene)				
Gas analyzer"Opto gas 500.4-CO" with electro- chemical detector	Determination of carbon mono-oxide, CO	5,0	0,1	γ-± 20	0 - 3	3.09.2017
Gas analyzer "R-310A" with	Determination of nitrogen oxides,	0,2 for NO ₂	0,001	γ-± 25	NO (0-0,08) NO ₂ (0-0,08)	28.09.2017
chemiluminescent detector	NO, NO ₂	0,4 for NO		δ-± 25	NO (0,08 - 1,0) NO ₂ (0,08 -1,0)	

Note: γ - limit of the allowed basic reduced measurement error;

 δ - limit of the permissible basic relative error of measurements;

Test equipment

Location of instruments during testing

Gas analyzer "Kolion 1B" with photo-ionization detector for determination of aromatic hydrocarbons in terms of benzene

Gas analyzer "R-310A' with chemiluminescent detector for determination of nitrogen oxides NO, ${\rm NO_2}$

Gas analyzer"Optogas 500.4-CO" with electro-chemical detector for determination of carbon monooxide, CO

Test procedure

- 1. Car refueling for 12 h before the test.
- 2. Preparation of gas analyzers for testing in-laboratory calibration of equipment before and after testing.
- 3. Departure to the test track warming up the vehicle at a speed of 60 km/h for 15 min.
- 4. Performing each of the modes for 15 min after which the measurement of pollutants have been hold.
- 5. The measurements of pollutants were carried out after 10-12 min of operation on each of the driving and idling modes. (no less than 5-6 measurements of each of the above-mentioned pollutants were carried out at each of the modes of motion, idling and operation modes of ventilation systems.
- 6. The ventilation of the vehicle's saloon was carried out after the end of each mode of moving and idling.

Example of an in-lab calibration of gas analyzers before the start and after finish of the test

In-lab calibration date 17. 10. 2017	Date of verification			
Gas analyzer, model R-310A, N 607-2-12, model Optogas 500.4	3.09.2017/ 28.09.2017			
Diluter, model 645 ГР-03М	28.06.2017			
Concentration of calibration gas mixture (CGM), NO/N_2 , ppm	51,9			
Concentration of calibration gas mixture (CGM), NO_2/N_2 , ppm	51,0			
Concentration of calibration gas mixture (CGM), CO/N_2 , ppm	85,0			
NO_2				
Specified concentration of CGM, mg/m³	0,812	0,406	0,206	0,104
Valve № for dilution	8	5,6	3,5	2,4
Measured concentration, mg/m³	0,797	0,391	0,195	0,093
Basic relative error,%	2,2	3,7	5,3	10,5
NO				
Specified concentration of CGM, mg/m ³	0,814	0,396	0,201	0,109
Valve № for dilution	7,8	5,7	4,6	5
Measured concentration, mg/m3	0,821	0,424	0,210	0,107
Basic relative error,%	0,8	7,0	4,4	1,8
CO				
Specified concentration of CGM, mg/m3	0,51	1,02	1,98	5,24
Valve № for dilution	4,7	6.8	7,9	8,9,10
Measured concentration, mg/m3	0,50	0,9	1,8	5,2
Basic relative error,%	1,9	9,0	9,0	0,8

 $\Delta \text{ - basic relative error,} \% = \frac{\text{Specified concentration - Measured concentration}}{\text{Specified concentration}}$

Thank you for your attention!
We are ready to answer your questions.

