The European Commission's science and knowledge service

32

·

Joint Research Centre

de.

EU-Commission JRC Contribution to EVE IWG

M. De Gennaro, E. Paffumi

24th Meeting of the GRPE Informal Working Group on Electric Vehicles and the Environment (EVE)

October 24th - 25th 2017, Vienna (AT)

Presentation Summary (1/2)

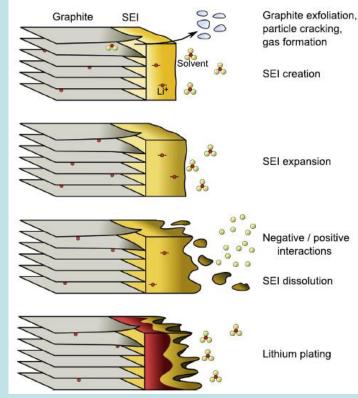
Follow-up of the JRC activities for contribution to the EVE IWG under the "in-vehicle battery ageing" topic

Summary after Geneva (June 2017), i.e. what's old:

- Literature review and ageing models;
- Methodology;
- Implementation and earliest results;
- Status of database processing;

Presentation Summary (2/2)

Follow-up of the JRC activities for contribution to the EVE IWG under the "in-vehicle battery ageing" topic


Current Status (Oct. 2017), i.e. what's new:

- Implementation of ageing models completed;
- Durability and EoL scenario analysis completed;
- In-vehicle validation running;
- EU-wide scale driving data running;
- Ready to discuss next steps!

Electrochemical ageing effects at negative (in-focus look at Li-Ion techs)

- Cathode:
- Lithium-Cobalt-Oxide
- (LiCoO2);
- Lithium-Iron-Phosphate
- (LiFePO4);
- Nickel-Cobalt-Manganese
- (NCM);
- Lithium-Mang.-Spinel-Oxide
- (LMO);
- Anode:
- graphite/carbon/titanate/silicon;

SEI (Solid Electrolyte Interface): Creation/Expansion/Dissolution/Plating

Ageing Consequences:

- 1) Primary loss of cyclable Lithium (side reactions/decomposition);
- 2) Secondary loss of active material (dissolution/degradation/delamination);
- 3) Resistance increase due to passive films;
- 1) + 2) \rightarrow capacity fade;
- 3) \rightarrow reduction of available power;

Source: Barre' et. Al., Journal of Power Sources 241(2013)

Electrochemical ageing models (in-focus look at Li-Ion techs)

Calendar Ageing: irreversible loss of capacity due to storage; Cycle Ageing: consequence of the battery charge/discharge cycles; → Capacity Fade = f(time, temperature, SOC, DOD, Ah, C-rate)

Electrochemical Ageing Models:

1) Electrochemical models (description of the in-battery phenomena – atomistic & molecular approaches);

2) Equivalent circuit based models;

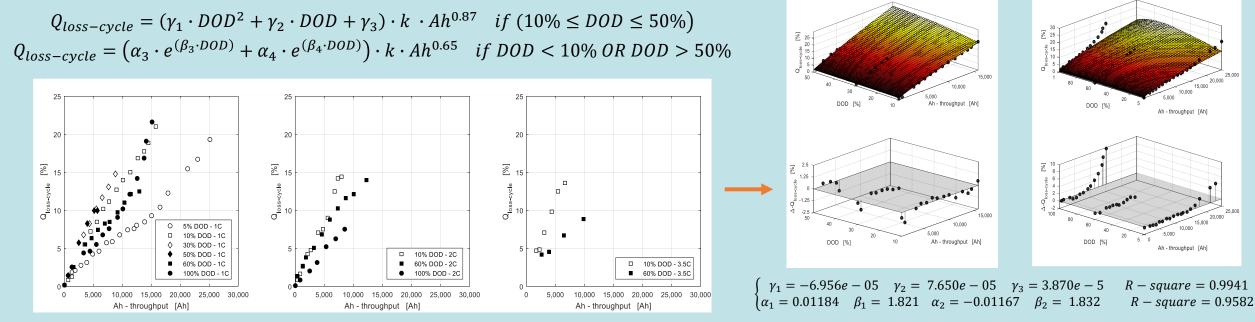
3) Performance based models/analytical models with empirical data fitting;

4) Statistical methods;

Source: Barre' et. Al., Journal of Power Sources 241(2013)

Performance based models (SotA)

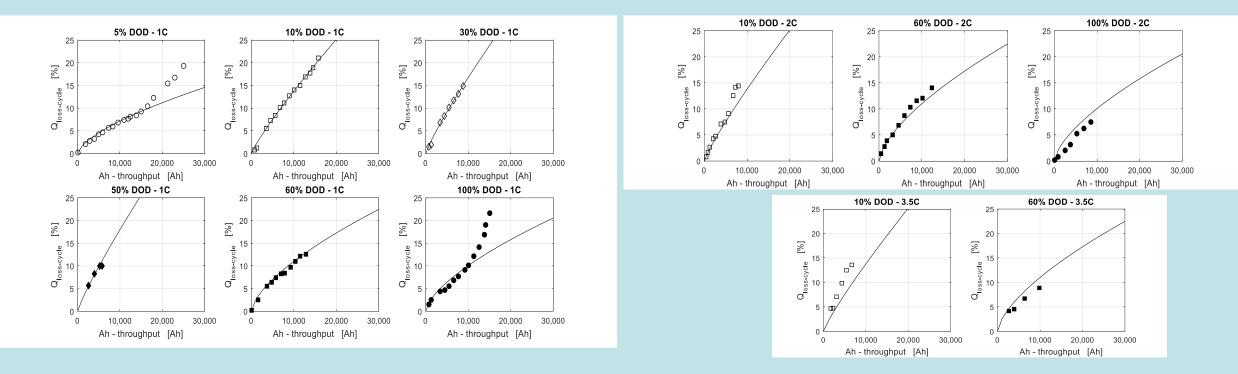
	Capaci	ty fade			Powe	r fade				
	Calendar	Cycle			Calendar	Cycle				
		Wang et Al. (2								
LiFePO ₄	Sarasketa-Zabala et Al. (2013/14)·	Sarasketa-Zabala (2013);	et	AI.	Sarasketa-Zaba	Sarasketa-Zabala et Al. (2013);				
		Sarasketa-Zabala (2015);	et	AI.						
NCM + spinel Mn	Wang et A	Al. (2014);			-	-				
NCM – LMO	-	Cordoba-Arenas (2014);	et	AI.	-	Cordoba-Arenas Al. (2015);	et			


Calendar + Cycle (4 Combinations):

- #1 (LiFePO₄): Sarasketa-Zabala et Al. (2013/14) model for calendar plus Wang et Al. (2011) model for cycle;
- #2 (LiFePO₄): Sarasketa-Zabala et Al. (2013/14) model for calendar plus Sarasketa-Zabala et Al. (2015) model for cycle;
- #3 (NCM + Spinel Mn): Wang et Al. (2014) for calendar plus Wang et Al. (2014) for cycle;
- #4 (NCM-LMO): Wang et Al. (2014) for calendar plus Cordoba-Arenas et Al. (2015) for cycle;

Performance based models (re-engineering)

Example of the calculation of the coefficients of the Sarasketa-Zabala et Al. capacity fade model (2015)



The non-linear least squares problem has been solved by using a damped least-square algorithm, i.e. the Levenberg–Marquardt (LM), in Least Absolute Residuals (LAR) formulation;

Performance based models (re-engineering)

Verification of the coefficients of the Sarasketa-Zabala et Al. capacity fade model (2015)

24th Meeting of the GRPE EVE IWG October 24th-25th, 2017, Vienna, (AT)

Implementation of the Performance based models into TEMA (assumptions, 1/2)

Vehicle Electric Architecture (examples)

TEMA Structure	,			PHE	V	BE\	/ 1	BEV
Pre-Processor Module	e 0							R
Module 1 Statistical Mobility Module 2	·1		J. J.					
Hybrid/Electric Vehicles and Recharge Behavioral Models Calendar Age				Vehicle Type	Battery Size [Wh]	Battery Shape	No. of Cells [#] and Type	Reference Voltage [V]
Vehicles usability			T-Shaped	PHEV	16,000	T-shaped	192 – pouch	365
analysis and UF Cycle Agein	ıg		Parallelepiped	BEV 1	24,000	Parallelepiped	192 – pouch	360
Module 3 Vehicles energy demand analysis	E		Flat-shaped	BEV 2	85,000	Flat	6,912 - cylindrical	345
Module 4 Infrastructure Design and V2G	External System Interface				sable Energy at BoL [Wh]	Usable Ene at EoL [Wh]		ve [% of apacity]
Module 5	8	Т	-shaped (PHEV)		12,000	9,600	2	.5%
Driving, Evaporative and		Para	allelepiped (BEV	1)	18,000	14,400	1	.5%
Cold-Start emissions module		Fla	t-shaped (BEV 2	2)	63,750	51,000	1	.5%

24th Meeting of the GRPE EVE IWG October 24th-25th, 2017, Vienna, (AT)

V 2

Electric Architecture 2P-96S

48S-2P-2S

16S-72P-6S

Energy consumption [Wh/km] 205 210 265

Implementation of the Performance based models into TEMA (assumptions, 2/2)

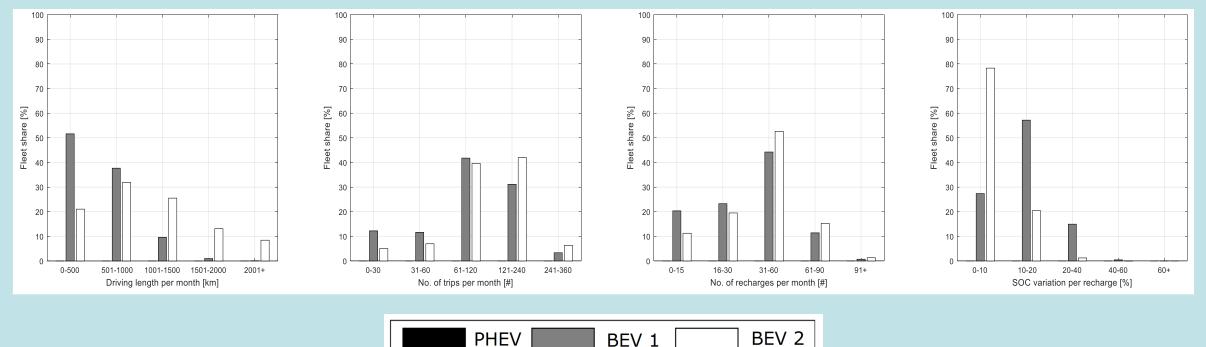
The models have been implemented by adopting the following assumptions:

- the calendar and cycle capacity fades are calculated at cell level (uniform ageing assumption);
- the model assumes average quantities in the reference period per each vehicle for DOD, C-rate, Ah-throughput and temperature;
- DOD and temperature are assumed equal to the battery values, consistently with the uniform fade assumption, whilst the C-rate and Ah-throughput are scaled from the battery level down to the cell;
- the battery temperature is regulated by the BMS between 22 °C and 27 °C during the driving and recharging phases (cycle capacity fade modelling), whilst it assumes the ambient temperature in the parking phase (calendar capacity fade modelling);
- The model capacity fade is calculated at the net of the capacity fade reserve. i.e.:

- 5 recharge strategies adopted:
 - \checkmark Str. 1 = Long Stop Random AC;
 - \checkmark Str. 2 = Short-Stop Random DC;
 - \checkmark Str. 3 = Night AC Str. 4 = Smart AC;
 - \checkmark Str. 5 = Long-Stop AC 3-phases;

Results (mobility)

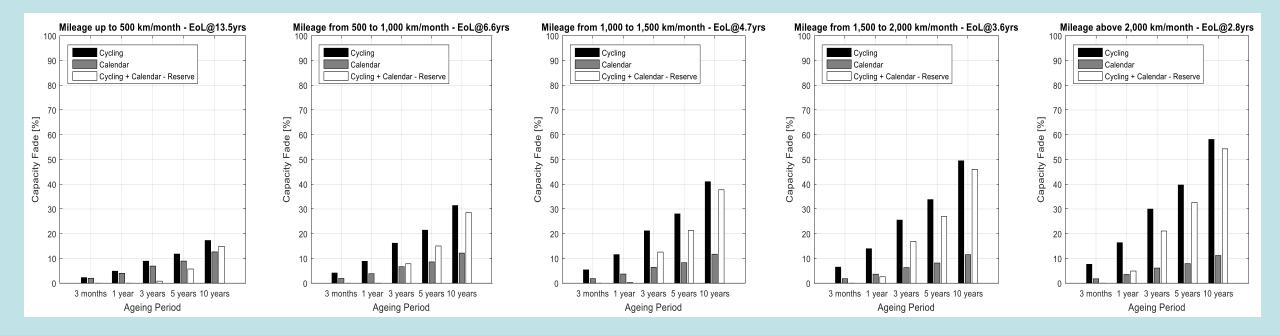
100 100 100 100 90 90 90 90 80 80 80 80 70 70 70 70 Fleet share [%] Fleet share [%] Fleet share [%] Fleet share [%] 60 60 60 50 50 50 40 40 40 30 30 30 30 20 20 20 20 10 10 10 10 Λ 1001-1500 1501-2000 2001+ 121-240 241-360 16-30 31-60 61-90 91+ 10-20 20-40 0-500 501-1000 0-30 31-60 61-120 0-15 0-10 40-60 60+ SOC variation per recharge [%] Driving length per month [km] No. of trips per month [#] No. of recharges per month [#]


Recharge Strategy 1

PHEV BEV 1 BEV 2

24th Meeting of the GRPE EVE IWG October 24th-25th, 2017, Vienna, (AT)

Results (mobility)


Recharge Strategy 2

24th Meeting of the GRPE EVE IWG October 24th-25th, 2017, Vienna, (AT)

Results (capacity fade – visualisation)

BEV 1 + Recharge Strategy 2

Results (Durability and EoL – tabulated)

Years of Life

500 - 1 000 1 000 -1 500 1 500 - 2 000

0 - 500

Mileage @ EoL

					0 - km/n	500 10nth	500 – km/m	,	1,000 - km/n	,	-	– 2,000 nonth	2,0 km/n											
					Years per EoL	Years per 100,000 km	Years per EoL	Years per 100,000 km	Years per EoL	Years per 100,000 km	Years per EoL	Years per 100,000 km	Years per EoL	Years per 100,000 km]					
			#1	LiFePO ₄	≥ 20		12.1			_		-								0 - 500 km/month	500 – 1,000 km/month	1,000 -1, 500 km/month	1,500 – 2,000 km/month	2,000+ km/month
			#2	LiFePO ₄	≥ 20		7.8			_		-						#1	LiFePO ₄	58,429.2	85,063.0	-	-	-
#1	PHEV		#3	NCM-Mn	$\frac{14.2}{15.5} \ge 20$	≥ 20	9.1	14.2		_		-				DITEX		#2	LiFePO ₄	43,610.2	54,834.0	-	-	-
			#4	NCM-LMO		13.1			_		_			#I	PHEV		#3	NCM-Mn	30,061.4	63,973.0	-	-	-	
Strategy		del	#4	LiFePO ₄					4.0	-		-			50		-	#4	NCM-LMO	32,813.5	92,093.0	-	-	-
rat		Mod			14.1		6.9		4.9		-				ategy		Model	#1	LiFePO ₄	39,649.2	53,937.3	62,176.1	-	-
Sti	BEV 1	g N	#2	LiFePO ₄	11.6 > 20	≥ 20	20 5.1 12.8	12.8	3.4 7.9	-				Str	BEV 1		#2	LiFePO ₄	32,619.2	39,866.7	43,142.6	-	-	
		in	#3	NCM- <u>Mn</u>	8.5		5.8		4.6			-	· · · · ·		e a	22.11	Ageing	#3	NCM- <u>Mn</u>	23,902.0	45,338.6	58,369.4	-	-
ar		Ageing	#4	NCM-LMO	8.9		7.5		6.9			-		·	har		- Å	#4	NCM-LMO	25,026.8	58,627.5	87,554.1	-	-
Recharge	DEVA	~	#1	LiFePO ₄	≥ 20	\geq 20		≥ 20		≥ 20		≥ 20		Rech			#1	LiFePO ₄	156,223.8	≥300,000	≥300,000	≥300,000	≥300,000	
ľ ž			#2 LiFePO ₄	LiFePO ₄	≥ 20	> 20	$\begin{array}{c c} \geq 20\\ 13.4 \end{array}$	11.2	≥ 20	6.0	≥ 20	5 1	≥ 20		BEV 2		#2 LIFEPO4 #3 NCM-Mn	LiFePO ₄	189,992.7 42,978.6	≥300,000	≥300,000	≥300,000 295,710	≥300,000 ≥300,000	
	BEV 2		#3	NCM-Mn	$12.6 \ge 20$	≥ 20		11.2	14.2		15.0	5.1	15.8	4.0				#3 #4	NCM-MII NCM-LMO	40,590.9	120,090.8 111,128.8	205,289.4 189,386.7	295,710	≥300,000 ≥300,000
			#4	NCM-LMO	11.9		12.4		13.1		13.9		14.9					# 4	LiFePO ₄	41,823.0	56,482.8	66,213.6	71,114.4	74,818.8
			#1	LiFePO ₄	13.5		6.6		4.7		3.6		2.8		f			#2	LiFePO ₄	28,501.6	32,520.4	33,811.2	35,557.2	34,737.3
#2			#2	LiFePO ₄	9.2		3.8		2.4		1.8		1.3	3.7 bi	50	BEV 1	Model	#3	NCM-Mn	24,474.2	44,501.6	54,943.2	61,237.4	69,474.6
b.	BEV 1	odel	#3	NCM-Mn	7.9	≥ 20	5.2	11.7	3.9	7.1	$\frac{1.0}{3.1}$ 5.1	5.1	2.6		ate			#4	NCM-LMO	26,642.8	59,050.2	85,936.8	108,647.0	133,605.0
teg		Mo	#3 #4	NCM-LMO			6.9				5.5		5.0		Str		l i i	#1	LiFePO ₄	147,465.0	≥300,000	≥300,000	≥300,000	≥300,000
Strategy		6			8.6				6.1							BEV 2	Agei	#2	LiFePO ₄	180,009.0	≥300,000	≥300,000	≥300,000	≥300,000
		ein	#1	LiFePO ₄	≥ 20		≥ 20		≥ 20		≥ 20		≥ 20		Rech.	BEV 2	₩	#3	NCM-Mn	41,019.0	107,861.6	174,368.6	239,238.4	≥300,000
ch.	BEV 2	Ageing	#2	LiFePO ₄	≥ 20	\geq 20	≥ 20	11.0	≥ 20	6.8	≥ 20	4.8	≥ 20	3.4				#4	NCM-LMO	38,985.0	100,610.4	161,069.3	222,739.2	≥300,000
Rech		4	#3	NCM-Mn	12.1	_ 20	11.9	11.0	11.8	0.8	11.6		11.3	5.1										
			# 4	NCM-LMO	11.5		11.1		10.9		10.8		10.7											
Legend																								

2 000+

/eg	end	
		EoL below 5 years;
		EoL between 5 and 10 years;
		EoL above 10 years;

Hierarchical relation of the variables (tentative)

- Level 1 (highest influence) \rightarrow
- Electrical architecture of the battery;
- Li-lon chemistry;

Level 2 (high influence) \rightarrow

- Driving pattern / mileage, i.e. time, SOC, DOD, Ah, C-rate;
- Level 3 (mid-to-low influence) \rightarrow Temperature;

Is there an in-vehicle battery durability potential issue (i.e. customer-expectation / comparison of technologies)? Apparently YES

Is the phenomenon fully comprehended? NO \rightarrow More efforts needed

Is there the necessity of informing / protecting the customer? **YES**

Is there an environmental aspect to be considered (i.e. life-cycle balance)? YES

Is a regulatory activity desirable? Let's discuss...

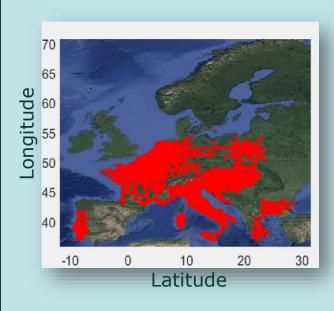
Limitations and next steps

- Li-chemistry is evolving \rightarrow follow the technical evolutions;
- Account for better/wider battery usage management strategies;
- Thermal aspects needs to be further refined (thermal dynamics of the battery);
- Active BMS and BMS designed for ageing? A possibility, need bi-directional DC-DC per module and or per-cell. Expensive for cars, but sometimes applied for stationary applications;
- Validation of the models at a vehicle level (on-going);
- Extend the use patterns baseline (on-going);

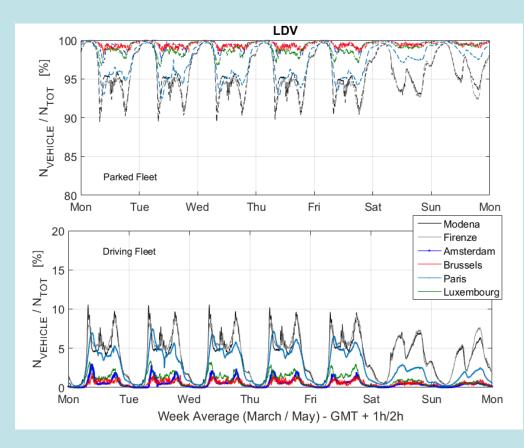
Can we use capacity fade results to better steer the test-matrix? How to define the Deterioration Factor? Should we opt for a base-test + correction? Reference-method and/or candidate method? Mixed?

Experimental data from Canada (on-going)

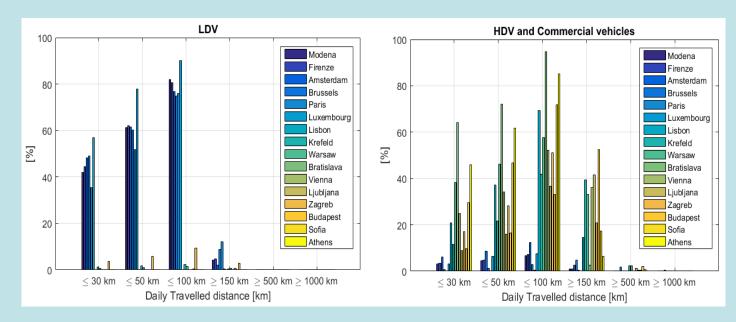
Additional analysis from Canada for double validation of the models


Table	1: BEV1 - DCFC (50kW	charger)							
Stage	Odometer Start [km]	Odometer End [km]	Distance [km]	Туре	Energy Drive, In [kWh]	Energy Drive, Out [kWh]	Energy Charge, In [kWh]	Energy Charge, Out [kWh]	UBE degradation vs. Round 1
1	1,663	4,684	3021	In-Lab	27.1	467.0	491.6	0.1	0.0%
2	4,684	15,049	10365	On-Road	280.2	1619.4	1425.4	0.0	
3	15,049	16,177	1128	In-Lab	16.0	176.5	173.5	0.0	-3.4%
4	16,177	34,860	18683	On-Road	457.3	3444.2	3197.1	0.0	
5	34,860	36,199	1339	In-Lab	17.5	204.0	198.0	0.1	-6.5%
6	36,199	50,057	13858	On-Road	398.2	2102.7	1847.8	0.0	
7	50,057	51,241	1184	In-Lab	16.5	183.5	178.5	0.0	-10.0%
8	51,241	62,469	11228	On-Road	262.9	2101.9	1887.4	0.0	
Table	2: BEV2 - ACL2 (7.2kW	charger)							
Stage	Odometer Start [km]	Odometer End [km]	Distance [km]	Туре	Energy Drive, In [kWh]	Energy Drive, Out [kWh]	Energy Charge, In [kWh]	Energy Charge, Out [kWh]	UBE degradation vs. Round 1
1	2,214	3,978	1764	In-Lab	18.2	294.7	287.3	0.2	0.0%
2	3,978	14,949	10971	On-Road	275.6	1712.7	1427.2	2.1	
3	14,949	16,247	1298	In-Lab	16.8	219.5	207.8	0.3	-3.4%
4	16,247	34,963	18716	On-Road	412.9	3300.0	2975.8	7.9	
5	34,963	36,274	1311	In-Lab	17.5	209.2	187.9	0.4	-5.3%
6	36,274	49,044	12770	On-Road	348.4	1989.6	1639.1	2.9	
7	49,044	50,378	1334	In-Lab	16.6	211.0	195.2	0.2	-6.8%
8	50,378	62,454	12076	On-Road	283.8	2258.6	2039.4	8.5	

Source: Presentation from Transport Canada @ EVE-22 (Ann-Arbor, April 2017)


EU-wide extension of the activity data (on-going)

	No. of vehicles	Total trips lengths [km·10 ⁶]	No. of days	Trip length [km] - (mean)	Daily driven distance – [km]	LDV Share	HDV Share	TOTAL
Province of Modena	16,263	14.98	31	7.8	51.9	91.6%	8.4%	
Province of Firenze	12,478	20.66	31	8.0	51.3	90.9%	9.1%	
Province of Amsterdam	197,754	19.86	7	18.3	48.0	83.2%	16.8%	
Province of Brussels	96,802	11.21	14	10.2	74.0	91.2%	8.8%	
Province of Paris	171,220	38.39	7	17.1	72.2	99.1%	0.9%	
Province of Luxembourg	14,090	1.0	7	12.2	30.8	92.0%	8.0%	
Province of Lisbon	7,522	2.48	7	15.0	86.1	-	100%	632,186 vehicles
Province of Krefel	4,160	0.97	7	88.8	151.7	2.9%	97.1%	139.57 million
Province of Athens	15,366	1.49	7	11.0	53.9	-	100%	km 2.57 billion
Province of Warsav	862	0.16	7	51.8	124.3	2.3%	97.7%	records
Province of Bratislava	18,296	1.0	7	22.9	35.0	-	100%	
Province of Wien	9,943	2.14	7	37.9	469.9	0.9%	99.1%	
Province of Ljubljana	11,616	4.04	7	45.3	148.6	0.7%	99.3%	
Province of Zagreb	12,036	3.79	7	24.3	104.6	14.0%	86.0%	
Province of Budapest	32,410	14.10	7	44.1	179.0	0.1%	99.9%	
Province of Sofia	11,368	3.28	7	16.4	87.4	-	100%	



EU-wide extension of the activity data (on-going)

Earliest results

&A

Thank you for the attention

Contacts Info: EC DG JRC DIR C ETC Sustainable Transport Unit michele.degennaro@ec.europa.eu elena.paffumi@ec.europa.eu

