ACSF-C2 2-actions system

Industry input to ACSF IG
$16^{\text {th }}$ meeting
January 2018, Tokyo

Content

$>$ Industry interest
$>$ Description of ACSF-C2
> Comparison of Concepts
> Philosophy of ACSF C2
Why only short range sensor is needed?
$>$ Blind zone detection
> Mode confusion issue
> Technical Proposal

Industry interest

$>$ At GRRF-85 of December, the text of ACSF-C (former ACSF-C1) was adopted.
> Industry still have a strong interest for ACSF-C2, e.g. regarding:

- C 2 is a more natural HMI, closer to manual lane change: the driver has full control on the timing of the 2 steps of a LC. This permits to increase the maximum time between the LCP and the LCM.
- Automatic deactivation of direction indicator causes unnecessary technical problems that can be corrected with ACSF-C2.
- Current ACSF-C requirements are design restrictive regarding HMI
- HCVs have a particular interest for ACSF-C2
$>$ Industry expectations from ACSF IG is to start the drafting phase to cover C2.

Description of ACSF C2

$1^{\text {st }}$ Deliberate action by the driver on the direction indicator

Comparison of concepts

	Manual driving	ACSF C1		ACSF C2
$1^{\text {st }}$ action	Activation of the direction indicator to inform the other users	Activation of the direction indicator to inform the other users and initiate the lane change procedure		Activation of the direction indicator to inform the other users and initiate the lane change procedure
$2^{\text {nd }}$ action	Action on the steering control to change lane	Automatic start of the lane change manoeuver, 3 to 5 s after the driver action.		Second deliberate action to initiate the lane change manoeuver.
	Given the LCM starts automatically up to 5 s (i.e. 180 m at $130 \mathrm{~km} / \mathrm{h}$) after the driver deliberate action... backward looking sensors have been judged necessary			en the LCM only starts a $2^{\text {nd }}$ deliberate action of ver, no backward looking sors are necessary... are other ways to ensure level of safety, see next slides

Philosophy of ACSF-C2 Safety measures

$>$ ACSF C2 is Level-2 system: the driver is hands-on and drives, the system only assists
$>$ The driver is expected to get quickly used to an HMI which is quite similar to that of the manual driving
$>$ The driver masters the exact time when the vehicle starts moving towards the lane, and consequently when the manoeuver starts, depending the surrounding traffic, similarly to the manual driving
$>$ The lane change assistance does not start automatically, thus "no surprise"
$>$ Unintentional activation is prevented thanks to:

* ON/OFF switch
* 2-action activation
$>$ The overriding force remains low (<50 N)
> Blind zone detection sensors ensure safety regarding the area not covered by the mirrors (and minimize over-reliance risks)

Philosophy of ACSF-C2

Why only short range sensors are needed?
> From previous slide:

* The driver masters the exact time when the vehicle starts moving towards the lane.
* With two actions HMI, the system requires two decisions from the driver, which are assumed to be based on the monitoring of the rear traffic.
> The driver is aware of the vehicle environment thanks to direct Field Of Vision (FOV) and indirect FOV (R46 mirrors):

The system must only monitor the zones out of mirror coverage:

- M1/N1: Class I and III FOV
- M2/M3 : Class II FOV
- N2/N3: Class II, IV and V FOV

Proposed blind zone detection example of N3 vehicles

OICA
Proposed blind zone detection M1/N1

OICA 雨为
 Mode confusion issue

What happens if the driver has wrong perception of the system installed in the vehicle?

The driver believes to have
C1
C2

C1
B

The vehicle is equipped with

Mode confusion issue

Scenario A: The driver believes to be in a C1 while being in a C2 equipped vehicle.

The driver uses the command to initiate the procedure and nothing happens (the system waits for a second action).
\rightarrow No safety issue

Scenario B : The driver believes to be in a C 2 while being in a C1 equipped vehicle.

The driver uses the direction indicator to initiate the procedure and the system starts a manoeuver only if the situation is deemed not critical.
\rightarrow No safety issue

Technical Proposal

> "3m x 3m" blind spot detection area (ISO17387 - see sketches) for M1/N1
> "3m x 3m" blind spot detection area inspired from ISO17387 - see sketches) for M2M3/N2N3 *
> If approaching vehicle detected in blind spot, then
o Warn the driver
o Lane change procedure suppressed automatically.

* For vehicles fitted with class IV mirrors, no Blind Spot sensor is needed since mirrors cover the whole zone

ANNEX

Radar vs. US sensors

Ultra-sonic sensor capabilities

> Range: 0-5 m
> Sensor-to-target relative speed: < 10km/h
$>$ Angle of detection: $\sim 120^{\circ}$
> Target movement: stationary and moving
> Target nature: any solid, no distinction
> HMI: ON/OFF detection
> Sensitivity to wheather conditions: low

Radar sensor capabilities

$>$ Range: 55 m (motorbikes)
> Sensor-to-target relative speed: 0-max speed
$>$ Angle of detection: 150°
> Target movement: stationary and moving
> Target nature: any solid, no distinction
> HMI: can transmit distance and speed
> Sensitivity to weather conditions: low

