Welcome to the FSD Testing Laboratory Radeberg!

Zentrale Stelle

Who is who

Jürgen Bönninger managing director

Dietmar Bönninger predevelopment testing technologies

Ralph Schröder division manager testing specifications

Manipulations of exhaust-gas after-treatment systems

Reducing the EGR rate with a diagnostic device

- Changing the EGR rate using commercially available diagnostic devices
- Purpose: Reducing carbon deposits in the intake tract
- Modification is recommended by the OEM as repair method in exceptional cases (see example)

Translation:

Note:

In cases of severe or repeat complaints, reducing the EGR rate can help reduce the intensity of carbon deposition.

However, this method should only be used in exceptional cases!

Reducing the EGR rate with a diagnostic device

- Possibility of modifying the EGR rate in sample vehicles (in this case BMW models) with diesel engines from 9/1998 (1,453,903 vehicles)
- Central Agency tests revealed a significant increase in NO_x emissions

Modifying the EGR rate with a diagnostic device

- By reading out the set calibration value using the PTI adapter
 - If calibration value = 0 → Original condition
 - If calibration value > 0 → Reduction in EGR rate
 - If calibration value < 0 → Increase in EGR rate

Software-based deactivation of exhaust-gas recirculation (EGR)

- By modifying the hysteresis values (e.g., intake air temperature) for the activation of the exhaust-gas recirculation or by modifying the characteristic map for the target air mass, for example
- Often in combination with a performance increase (tuning) with simultaneous deactivation and removal of the diesel particulate filter (DPF)
- Modifying the activation conditions (intake air temperature or target air mass) so that no EGR occurs in the normal driving mode
- Consequence: Deactivation of EGR
 - → Significant increase in NO_x emissions

Software-based deactivation of exhaust-gas recirculation (EGR)

- By reading out the software identification parameters via standardised OBD protocols using the PTI adapter:
 - Calibration Identifier (CALID) OBDII Mode 9 PID 0x04
 - Calibration Verification Number (CVN) OBDII Mode 9 PID 0x06
- Comparing the values with target values of a permissible data record
- Optionally: Reading out the value of current fresh-air mass using the PTI adapter and comparing it with reference values

Manipulation of the EGR position sensor

Simulation of an intact EGR valve by installation of an additional device

- Original EGR valve is no longer powered and remains closed
- Engine control unit does not "detect" the defect, as it continues to receive signals from the simulator
- Consequence: Deactivation of exhaust-gas recirculation
 → Significant increase in NO_x emissi

Manipulation of the EGR position sensor

- Reading out vehicle self-diagnosis data

 (e.g., current fresh-air mass)
 using the PTI adapter and comparing it with reference values
- Optionally: Visual inspection in the area of the exhaust-gas recirculation actuator

Mechanical deactivation of exhaust-gas recirculation

- By installing a mechanical baffle between the exhaust-gas and fresh-air paths of the engine
- Or by sealing the hose to the vacuum actuator in pressure-controlled systems
- Consequence: Deactivation of exhaust-gas recirculation
 → Significant increase in NO_x emissions

Mechanical deactivation of exhaust-gas recirculation (EGR)

- Reading out the value for current fresh-air mass using the PTI adapter and comparing it with reference values
- Optionally: Visual inspection of the exhaust-gas path for abnormalities

Removal of the NO_x adsorber and/or SCR catalyst

- Often in combination with removal of the diesel particulate filter
- Removal of components and installation of replacement hoses or destruction of the monoliths and installation of "empty housings"
- Then: Deprogramming the corresponding functions from the engine management
- Consequence: Complete disabling of the exhaust-gas post-treatment functions
 → Significant increase in exhaust-gas emissions

Removal of the NO_x adsorber or SCR catalyst

- By reading out the software identification parameters via standardised OBD protocols using the PTI adapter:
 - Calibration Identifier (CALID) OBDII Mode 9 PID 0x04
 - Calibration Verification Number (CVN) OBDII Mode 9 PID 0x06
- Comparing the values with target values of a permissible data set
- Reading out the differential/back pressure across/before the DPF using the PTI adapter and comparing it with reference values
- Reading out the NO_x concentration in the exhaust gas using the PTI adapter and comparing it with reference values

Reduction or deactivation of AdBlue injection

Ву

a) Making corresponding changes to characteristic maps in the engine control unit or

Mark Carlos Sala

- b) Installing special simulators (emulators)
 - Purpose: Reducing AdBlue consumption (often in commercial vehicles)
 - Consequence: Insufficient or no AdBlue injection
 → Significant increase in NO_x emissions

Reduction or deactivation of AdBlue injection

Detecting manipulation case as part of the PTI:

- By reading out the software identification parameters via standardised OBD protocols using the PTI adapter:
 - Calibration Identifier (CALID) OBDII Mode 9 PID 0x04
 - Calibration Verification Number (CVN) OBDII Mode 9 PID 0x06
- Comparing the values with target values of a permissible data record
- Reading out the in-vehicle value for NO_x concentration in the exhaust gas using the PTI adapter and comparing it with reference values

Development of testing technologies

Overview

Development of a concept for five testing technologies (P1–P5) to detect these manipulations (B1–B8):

- Testing technology P1: Querying the software status (CALID/CVN comparison)
- Testing technology P2: Querying the exhaust-gas recirculation calibration value
- Testing technology P3: Querying the value for differential or back pressure at the diesel particulate filter
- Testing technology P4: Querying the NO_x sensor signals
- Testing technology P5: Querying the value for air mass

Development of testing technologies

Overview matrix of testing technologies

Chart of manipulation methods and the testing technologies for detecting them

			Manipulation method							
			B1	B2	В3	B4	B5	В6	B7	B8
			Modification of EGR rate	Deactivated EGR (software)	Deactivated EGR (software)	Mechanical deactivation with simulator	Mechanical deactivation	Mechanical deactivation	Removal of NSC/SCR/DPF	Deactivation/ reduction of AdBlue
Testing technology	P1	Software status		Х	X				Х	X
	P2	EGR calibration value	Х							
	P3	Differential/ back pressure							X	
	P4	NOx sensors							X	X
F	P5	Air mass	X	X	X	X	X	Х		