The European Commission's science and knowledge service

Joint Research Centre

Progress on thermal propagation testing

Andreas Pfrang, Vanesa Ruiz, Akos Kriston, Natalia Lebedeva, Ibtissam Adanouj, Theodora Kosmidou, Franco Di Persio, Marek Bielewski, Emilio Napolitano, Lois Brett

March 2018

Outline

Thermal propagation testing in standards

Europe

ommission

Scope:

3

- Review of existing standards in various applications
- Analysis of gaps and fitness for purpose
- On-going standardisation efforts

Thermal propagation testing in Standards - Automotive applications						
Standard	Level of test	Test title	SOC	Initiation method		
SAE J2464:2009	М, Р	Passive propagation resistance test	100%	Heating 1 cell until TR or 400 °C in < 5 min $*$		
SAND99- 0497:1999	М, Р	Partial short circuit test	100% (>95% after charge in 4h)	Hard short circuit with a $\leq 5m\Omega$ conductor		
SAND2005- 3123:2005	М, Р	Partial short circuit test	100%	for 10 min		
SAND2017- 6925:2017	М	Failure Propagation Test	100% (several SOCs if multiple test articles are available)	Heating, electrical (overcharge or cell short circuit) or mechanical (puncture, impact or crush) *		
IEC 62660- 3:2016. Ed1	C=IEC 62619:2017 Ed1=IEC62133 M, P	Internal short circuit test	100%	C= Ni particle method *. M= e.g. IEC 62619:2017 (heating *) P= under consideration for ISO 12405-3		
IEC TR 62660- 4:2017. Ed1	C (pouch, cylindrical, prismatic)	Candidate alternative test methods for the internal short circuit test of IEC 62660-3	Max. SOC specified by the manufacturer	Ceramic nail indentation		
UL 2580:2013	М, Р	Internal fire exposure test	Max. operating SOC	Heating until TR in < 10min $*$		
				European		

* Alternative methods allowed

C: cell level, M: Module level, P: Pack level, SOC: State of charge, TR: thermal runaway

Commission

Thermal propagation testing in Standards - <u>Automotive applications</u>							
Standard	Level of test	Test title	SOC	Initiation method			
SAE J2464:2009	М, Р	Passive propagation resistance test	100%	Heating 1 cell until TR or 400 °C in < 5 min $*$			
SAND99- 0497:1999	М, Р	Partial short circuit test	100% (>95% after charge in 4h)	Hard short circuit with a $\leq 5m\Omega$ conductor			
SAND2005- 3123:2005	М, Р	Partial short circuit test	100%	for 10 min			
SAND2017- 6925:2017	М	Failure Propagation Test	100% (several SOCs if multiple test articles are available)	Heating, electrical (overcharge or cell short circuit) or mechanical (puncture, impact or crush) *			
IEC 62660- 3:2016. Ed1	C=IEC 62619:2017 Ed1=IEC62133 M, P	200	100%	C= Ni particle method *. M= e.g. IEC 62619:2017 (heating *) P= under consideration for ISO 12405-3			
IEC TR 62660- 4:2017. Ed1	C (pouch, cylindrical, prismatic)		Max. SOC specified by the manufacturer	Ceramic nail indentation			
UL 2580:2013	М, Р		Max. operating SOC	Heating until TR in < 10min $*$			
				European			

* Alternative methods allowed

C: cell level, M: Module level, P: Pack level, SOC: State of charge, TR: thermal runaway

Commission

Thermal propagation testing in Standards

Non-automotive applications		Currently under development			
Standards	Aplication	Standard	Title		
UL 9540A:2018	Energy Storage Systems		Electrically propelled road		
IEC 62619:2017	2619:2017 Industrial applications		- Part 1: On-board		
VDE-AR-E 2510-50:2017	Stationary storage	ISO 6469-1 Revision	rechargeable energy storage system (RESS) Amendment 1 Safety management of		
JSC-20793 Rev D:2017	Spacecraft				
IEC 62133-2:2017	Portable applications		Performance based package standard for lithium batteries		
Telecordia GR-3150:2015	Backup power	SAE AS6413			
SAND2014-17053:2014	Civilian and military applications		Standard for batteries for use in light electric rail (LER) applications and stationary		
IEC TR 62914:2014	Portable applications	UL 1973 Revision			
NAVSEA SG270-BV-SAF-010:2011	Navy systems		applications		
SBA S1101:2011	Industrial applications				
IEEE 1625:2008	Mobile devices				
RTCA DO-311:2008	Aircraft installations				
JIS C8714:2007	Portable applications				

Outline

JRC experimental TP activity

Cell & material

<u>Comparison of initiation</u> <u>techniques</u>

- Trigger energy/ energy release
- Repeatability + ARC, DSC

Narrow down init. methods

Short stack

Analyse influential factors on the outcome

- Temperature, SOC...
- Cell configuration
- Spark source

Module

Evaluate repeatability, reproducibility

- Check proposed test descriptions (also with testing bodies)
- Round robin tests
- Define pass/fail criteria

Pack, Vehicle

Verification and finalization of method

- Round robin tests
- Practical aspects
- Define robust evaluation methods (e.g. gas analysis)

Refine test description

JRC experimental TP activity

Cell & material

<u>Comparison of initiation</u> <u>techniques</u>

- Trigger energy/ energy release
- Repeatability + ARC, DSC

Narrow down init. methods

Short stack

Analyse influential factors on the outcome

- Temperature, SOC...
- Cell configuration
- Spark source

Module

Evaluate repeatability, reproducibility

- Check proposed test descriptions (also with testing bodies)
- Round robin tests
- Define pass/fail criteria

Pack, Vehicle

Verification and finalization of method

- Round robin tests
- Practical aspects
- Define robust evaluation methods (e.g. gas analysis)

Refine test description

Screening initiation methods

Objective:

- Compare the current (GTR) and other candidate initiation methods
 - Which is the most suitable method?
 - In case several methods are selected: Are they equivalent? Are they robust enough? Are they sensitive to testing conditions?
- Evaluate TR assessment
 - What are the characteristics of TR?
- Collect statistics about reproducibility and repeatability

Design of screening tests

- Initiation methods (5): Heating, Nail, Overcharge (?), Rapid heating (Canada), Ceramic nail (IEC TR 62660-4)
 Battery type (4):21700 4 Ah, BEV 96 Ah, Pouch 32 Ah, PHEV2 26 Ah
- 3. Assess impact of open/poorly defined testing conditions (2): on next slides
- Monitor: cell surface temperature, voltage evolution
- (drop), heating rate, venting (y/n) and evaluate if TR is
- 1happened (y/n)

ommission

General test matrix

Initiation method	Automotive battery type					
Row Labels	21700 4 An	BEV 96 An	Pouch 32 An	PHEV2 26 Ah	Grand lotal	
4.1 - Heating	3	3	3	3	12	
4.2 - Nail	3	3	3	3	12	
4.3 - Ceramic	3	3	3	3	12	
4.4 - Overcharge	3	3	3	3	12	
4.5-Rapid heating	3	3	3	3	12	
Grand Total	15	15	15	15	60	

Testing open parameters/conditions

- According to <u>GTR Phase 1</u> the test description has several open parameters which may have a significant influence on the outcome. The aim of this test is
- To identify those parameter values which have the highest probability to reach and not to reach TR,
- 2. To test and to evaluate their effects on testing outcome

Open parameters of heating test (GTR Phase 1)

- Area of the heater is not defined
- Heating rate/power is not defined
- Temperature of the heater is not defined (stop heating when T>300°C at the other side but this is not the heater's temperature. Too high temperature of the heater can melt the cell)
- Temperature measurement point is not defined fully (opposite to the heater, but where? e.g. in the middle?)

Open parameters of overcharge (OC) test (GTR Phase 1)

- Current rate is in a wide range DSC/ 1/3-1C
- Is this C-rate enough for TR?
- Effect of built-in safety device?

Other issues:

- Is OC a comparable initiation method regarding internal energy?
- Is it a single failure (OC+ISC)?

16 D. Below et al. / Solid State Ionics 179 (2008) 1816–1821

H. Maleki et al. / Journal of The Electrochemical Society, 146 (9) (1999) 3224-3229

DSC and TG signal of differently charged graphite anodes

European Commission

E.P. Roth et al. / Journal of Power Sources 134 (2004) 222-234

Open parameters of nail test (GTR Phase 1)

- Diameter of the nail is >3 mm quite a wide range
- Speed is in a wide range (0.1-10 mm/s)
- Angle of the nail is in a wide range (20-60°)
- Position and direction is not specified
- Depth of penetration is not specified
- Remove the nail or not after penetration? How fast?

Outline

Pass/fail criteria of thermal propagation

- > Option 1-2 can be assessed by standard GTR methods
- > Option 3 needs further statistical consideration
 - > Variation of egress time and its statistical distribution
 - > Agree on significance level for comparison.

Time to failure

Time to failure (distribution)

Is there enough time for egress?

Time to failure

Assessment of time to failure (illustration)

European Commission

- If the test is passed, how probable is it that the passenger has indeed sufficient time for egress in all cases?
- What is a practical confidence interval? 95%

Acknowledgement BATTEST group

Franco Di PersioRicardo Da Costa BarataDenis DamsNatalia LebedevaEmilio NapolitanoIbtissam AdanoujLois BrettAndreas PfrangMarek BielewskiVanesa RuizTheodora KosmidouAkos Kriston

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: **EU Science Hub**

andreas.pfrang@ec.europa.eu

