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¶ Metal particle contamination does not necessarily result in catastrophic thermal 
events, even after cycling under compression.

¶ Careful cell design (chemistry, configuration) and manufacturing process steps will 
minimize risk that a severe internal short circuit event can occur.

KEY MESSAGES
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¶ Problem Definition – Metal particles in Li-ion cells may pose a 
safety risk due to the potential formation of an internal short 
circuit.

– How do metal particles cause short circuits in the cells?

– Is the severity of the short circuit dependent on the location of the 
particle within the cell?

– Separator poke-through versus dendrite formation

– Is the severity of the short circuit dependent on the size of the particle?

– At what minimum particle size will the effects caused by the particle be detected and the cell 
rejected in the manufacturing process?

– Does the severity of the short circuit increase with cycling or storage?

EFFECT OF METAL PARTICLES IN LI-ION CELLS
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TYPES OF INTERNAL SHORTS

From “UL Transportation Tests and UL Lithium Battery Program
Underwriter’s Laboratory Inc. – General Experience and Status Update,” 

November 11, 2008
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RELATIVE RESISTANCE OF ISC TYPE

Cathode Material

Cathode Material

Shriram Santhanagopalan, Premanand Ramadass, John (Zhengming) Zhang,
Analysis of internal short-circuit in a lithium ion cell,

Journal of Power Sources, Volume 194, Issue 1, 2009, Pages 550-557. 6



¶ Separator Poke-through:

– If the particle is large enough, it could rub-through or poke-through the 
separator and create an internal short circuit.

POTENTIAL METAL PARTICLE SHORTING MECHANISMS

¶ Dendrite Formation:

– If the particle is located on the surface of a 
charged positive electrode, it could undergo 
electrochemical dissolution, with subsequent 
plating of the metal onto the surface of the 
negative electrode.

– If dendritic growth occurs, and the particle has 
enough mass, then these dendrites could grow 
through the separator and contact the positive 
electrode.
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¶ Metal Particle Sizes

– Run 1, 500-700 µm iron particles (ease of 
handling)

– Run 2, 50-150 µm iron particles (low end of 
known contaminant sizes)

¶ Detection Methods and Tests

– Hi-Pot test after electrode stack assembly

– Self-Discharge (Delta-OCV) Check during Aging process step (50% SOC at 35ºC for 7 days)

– Cycle Life Test (100% DOD at 1C/1C rate and 35ºC under compression)

– Storage Test (100% SOC at 35ºC under compression)

¶ The Cells Used

– 1.4 Ah, multi-layer, Li-ion pouch cells (baseline and 1-particle cells, 3-6 of each type)

– MCMB graphite and NMC, with uncoated 25 µm tri-layer separator and 1M LiPF6 EC/DEC/EMC 
electrolyte

– Fe particles placed in one of three locations: Anode Center, Cathode Center and Cathode Tab 
near the anode (see diagram and CT scan image)

THE STUDY:

Run #1 Particles Run #2 Particles
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¶ All cells passed the Hi-Pot test after electrode stack assembly

¶ Only cells with large particles located on the cathode surface showed 
higher than normal self-discharge rates

CELL MANUFACTURING QUALITY CHECKS

Run
Iron Particle 

Size
Anode 
Center

Cathode Tab
Cathode 
Center

Baseline 
Cells

Run #1 > 500 µm
Pass Hi-Pot

Pass self-
discharge

Pass Hi-Pot
Failed self-
discharge

Pass Hi-Pot
Failed self-
discharge

Pass Hi-Pot
Pass self-
discharge

Run #2

100-150µm
Pass Hi-Pot

Pass self-
discharge

Pass Hi-Pot
Pass self-
discharge

50-100 µm
Pass Hi-Pot

Pass self-
discharge

Pass Hi-Pot
Pass self-
discharge

Passed 

Failed / High Self-discharge

Run #1 Cells
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¶ Cathode Center particle 
cells showed a more 
rapid Ah capacity decline.

¶ Anode Center and 
Cathode Tab particle cells 
showed no significant 
difference compared to 
the Baseline cells.

¶ No cell venting occurred.

RUN #1 CELLS – CYCLE LIFE TEST

Cathode Center

Particle Cells

-- Anode Center

– Cathode Tab

– Cathode Center

– Baseline
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¶ Cathode Tab particle cells showed 
a higher voltage loss at each RPT.

¶ Anode Center particle cells showed 
no significant difference compared 
to the Baseline cells.

¶ Due to monthly RPT’s, all cells 
showed similar capacity loss.

¶ No cell venting occurred.

¶ Cathode center particle cells did 
not undergo this test due to their 
already high self-discharge rates.

RUN #1 CELLS – STORAGE TEST
Anode Center Cathode Tab Baseline

Anode Center Cathode Tab Baseline

Test Error11



¶ In all cases, both the particle containing cells and the baseline 
cells showed reduced 7-day self-discharge rates after their 
cycling or storage tests.

RUN #1 CELLS – SELF-DISCHARGE RATES AFTER 
CYCLING OR STORAGE TESTS

Anode Center Cathode Tab Baseline

Cathode Center

Cathode Tab Anode Center

Actual BOL self-discharge 
rates are >300 mV/day for 
these cells.
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¶ 100-150 µm particles 
appear to the 
minimum size that 
causes premature 
cycle life failure.

¶ No cell venting 
occurred

RUN #2 CELLS – CYCLE LIFE TEST

Manufacturing error caused 

Li metal plating

CSL622

CSL623

CSL624

CSL631

CSL632
-- 50-100 µm Cathode Center

– 100-150 µm Cathode Center

-- Baseline

Apparent a low 
mass particle
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¶ For cells with particles <150 µm, no significant self-discharge 
rates or capacity loss differences were seen between them and 
the Baseline cells.

RUN #2 CELLS – STORAGE TEST

50-100µm 100-150µm Baseline 50-100µm 100-150µm Baseline
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¶ In almost all cases, both the particle containing cells and the 
baseline cells showed reduced 7-day self-discharge rates after 
their cycling or storage tests.

RUN #2 CELLS – SELF-DISCHARGE RATES AFTER 
CYCLING OR STORAGE TESTS

50-100µm 100-150µm Baseline

50-100µm 100-150µm Baseline

15



POST-TESTING TEARDOWN

¶ All particle containing and Baseline cells 
were examined post-test.

– 7-day Self-Discharge test and teardown to confirm 
presence of the particle and root cause of failure.

– Evidence of Fe dendrites found on separator and 
anode surface for all Cathode Center and Cathode 
Tab cells. (No particle left on cathode surface).

– Li metal plating also found on anode surface 
surrounding the Fe dendrite growth (worse for large 
particle cells, not seen in <100 mm size particle cells).

– Original particles found in all Anode Center cells.
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TEST RESULT SUMMARY:

Run
Iron Particle 

Size
Particle 
Location

7-day Aging OCV 
Check

Cycling vs.
Baseline Cells

Storage vs. 
Baseline Cells

Run #1 >500 µm

Cathode Center
Exceeded

2 mV/day Limit
More rapid

capacity fade
Not Run

Cathode Tab
Exceeded

2 mV/day Limit
No Difference

Greater
Self-discharge

Anode Center Passed No Difference No Difference

Run #2

100-150 µm Cathode Center Passed
Slightly more 
rapid capacity 

fade
No Difference

50-100 µm Cathode Center Passed No Difference No Difference
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¶ Particles much larger than the separator’s thickness (20-28 times) did not push 
through to create an internal short, even after cycling under compression.

¶ Metal particles on the negative electrode (anode) did not cause internal cell shorting.

¶ Only metal particles initially located on the positive electrode, if of sufficient size and 
mass, caused internal cell shorting.

¶ Large metal particles are detectable by self-discharge and capacity loss in the 
manufacturer’s Aging/Storage process step.

¶ Particles below 100 µm have limited or no effect, while particles near 150 µm did 
cause pre-mature cycle life failure.

CONCLUSIONS:
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Detection of Cell Internal 
Shorts

OICA Presentation to the EVS GTR IWG

March 2018
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Key Messages

• Many internal shorts can be detected during manufacture and in 
usage

• Internal short behavior can often be measured and understood
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Types of Shorts

• Immediate
• Largely managed by cell design and manufacturing control

• Possibly detectable during manufacturing process

• Developing
• Likely not possible to fully prevent

• Possibly detectable during usage –
• Requires appropriate cell measurements and diagnostic algorithms

• Assumes that short develops over multiple cycles / days
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Possible Detection Methods

• In manufacturing process
• Self-discharge rate – monitor for values above a defined limit

• Times, methods, limits vary by manufacturer

• High voltage test prior to electrolyte added 

• In vehicle
• Cell voltage – monitor for low cell voltage

• Cell to cell voltage difference – monitor for differences above a defined limit
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Why Can These Methods Work?

• Simple circuit model

• Since stored energy is proportional to battery voltage, as energy is 
dissipated through resistance, battery voltage drops.

• Voltage reduction is observable.

RiscVcell

iisc

Edis = ∫ Vcell∙iisc dt
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Example of Manufacturing Process Detection

• Voltage degradation monitored for a period of time

• Measured degradation compared to acceptable limit values
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Internal Short Resistance Behavior In Use

• Resistance reduces over time

• Cell energy (voltage) is 
reducing throughout time

• As energy loss integrates over 
time, can reach detectable level 
prior to short circuit at critical 
level

McCoy, C., Sriramulu, S., Stringfellow, R., Ofer, D. & Barnett, B.   Lithium-Ion Battery 
Safety: Detection of Developing Internal Shorts and Suppression of Thermal 
Runaway.  46th Power Sources Conference, 2014.
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Critical Internal Short Resistance

• Depending on cell chemistry, cell 
design, and application, there 
exists a threshold between 
thermal runaway and no thermal 
runaway

Barnett B., Ofer D., Sriramulu S., Stringfellow R. (2013) Lithium-Ion 
Batteries, Safety. In: Brodd R. (eds) Batteries for Sustainability. Springer, 
New York, NY 26



Industry Field Experience
Lithium Ion Battery Internal Short

Presentation to EVS GTR IWG

March 2018
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Key Messages

• Industry has extensive field experience with lithium ion cells

• There have been no known incidents of internal short circuits 
resulting in cell thermal runaway
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General Motors Experience
Lithium ion cells in field since 2010

Multiple vehicle applications
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GM battery cell varieties

• Chevrolet Volt
• Construction type: Pouch
• Cathode material: 

• 50% LMO / 50% 111 NMC
• 30% LMO / 70% 442 NMC
• 532 NMC

• Spark EV
• Construction type: Pouch
• Cathode material: 

• LFP (limited volume)
• 30% LMO / 70% 442 NMC

• Bolt
• Construction type: Pouch
• Cathode material:

• 622 NMC

• Mild Hybrid
• Construction type: Cylindrical
• Cathode material:

• 111 NMC

• Strong Hybrid
• Construction type: Prismatic can
• Cathode material:

• 442 NMC
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Chemistry Description

• Cathodes
• LMO - lithium manganese oxide

• LiMn2O4

• Sometimes called Manganese Spinel or Li Manganese Spinel

• NMC – lithium nickel manganese cobalt oxide
• Li(NixMnyCoz)O2

• Numerical prefix refers to relative amount of each metal in the structure

• LFP – lithium iron phosphate
• LiFePO4

• Anodes
• Carbon

• Mixtures of various types of carbons (hard and soft) and/or graphites (artificial and natural with 
an amorphous carbon coating).

31



GM estimated vehicle volumes

• Volt Gen 1 (and related vehicles): ~ 90k

• Volt Gen 2 (and related vehicles): ~ 45k

• Spark EV: ~ 7k

• Bolt: ~ 25k
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Known Internal Short Induced Thermal Events

• NONE
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Possible internal short frequency

• Varies somewhat by cell type and manufacturer

• Overall GM experience shows ~2-5 events per million cells for 
detected cell internal short in customer vehicles
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Ford Motor Company 
Experience



Ford Battery Cell Varieties

• Focus Electric
• Construction Type:  Pouch cell
• Cathode Material:  622 NMC
• Anode Material:  Carbon

• Fusion / Mondeo / Lincoln MKZ Hybrid
• Construction Type:  Aluminum Can
• Cathode Material:  111 NMC
• Anode Material:  Carbon

• Fusion Energi
• Construction Type:  Aluminum Can
• Cathode Material:  111 NMC
• Anode Material:  Carbon

• C-Max Hybrid
• Construction Type:  Aluminum Can
• Cathode Material:  111 NMC
• Anode Material:  Carbon

• C-Max Energi
• Construction Type:  Aluminum Can
• Cathode Material:  111 NMC
• Anode Material:  Carbon



Ford Motor Company EVs by Model Year Approximate Sales 
Volume

2012-2017 Ford Focus Electric (BEV) 10,500

2013-2017 Ford Fusion / C-Max / Mondeo / 
Lincoln MKZ Hybrid (HEV)

313,000

2013-2017 Ford Fusion / C-Max Energi (PHEV) 90,000

Approximately 35 Million Cells and no
documented thermal events due to internal short


