EVS GTR

Li-ion Battery Thermal Runaway Caused Toxics and Analysis

J. Sun, F. Wang, H. Li XK. Lai, XP. Qiu, LQ. Chen

March 2018

Contents

1 Li-ion Battery Thermal Runaway toxics risk always exists

2 Database and grade of Li-ion Battery Thermal Runaway toxics

3 To test and monitor the rank poison gases is very necessary

4 Occurrence scenes of Li-ion battery Thermal Runaway toxic leakge

5 Standard methods to test Li-ion Battery Thermal Runaway toxics

6 We advice to add Li-ion Battery Thermal Runaway toxics inspection items

Team & Development

- ICD (Institute of Chemical Defense, Jie Sun)
- TU (Tsinghua University, Xinping Qiu, Minggao Ouyang)
- SG (State Grid, Xiaokang Lai)
- CAS (Institute of Physics, CAS, Hong Li)
- CATARC (CATARC, Fang Wang)

2011-2013

Identification of inorganic small molecule poisons, CO_x , HF, PO_x ,

Temperature change curves

2013-

Qualification to quantification,

Organic toxics confirm

2014-

Toxics caused by Li-ion battery thermal runaway and emergency treatment

2015-

Safety and protection technology to toxics caused by Li-ion battery thermal runaway

Li-ion Battery Thermal Runaway toxics threat always exists

An improved understanding and control of the Li-ion battery safety, development and induced thermal and chemical threat is actually needed.

Boeing 787

Tesla EV

Samsung Note7

With CO_x , HF, PO_x and toxic VOCs

Database and classification of Li-ion Battery Thermal Runaway toxics

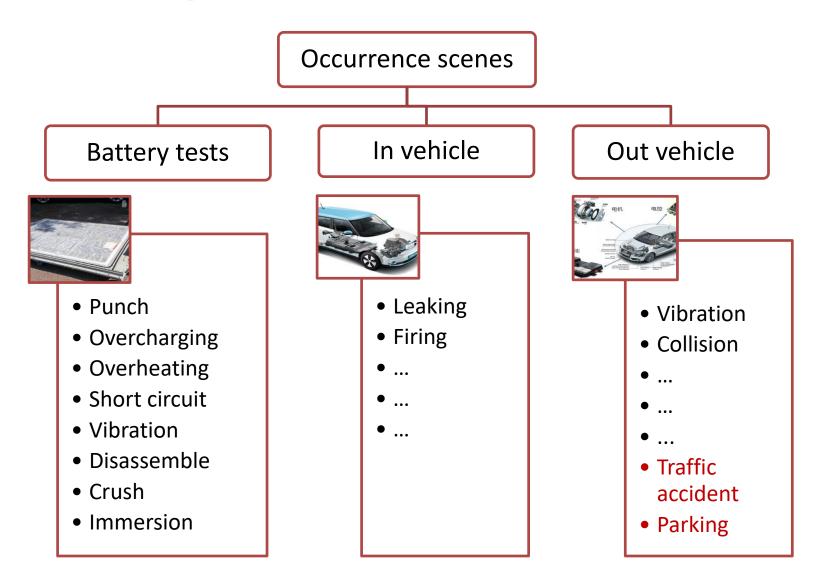
No.	Compound	CAS	Toxity grading	LCB	LMB	NMC	LPB				
1	2-Propenal (C ₃ H ₄ O)	107-02-8	rank poison	0%, 150%	50%	0%,50%	50%				
2	Propanedinitrile ($C_3H_2N_2$)	109-77-3	rank poison			100%					
3	Propanenitrile (C ₃ H ₅ N)	107-12-0	rank poison			100%					
4	Naphthalene (C ₁₀ H ₈)	91-20-3	high toxic	50%,100%,150%		0%,100%,150%					
5	Carbonyl sulfide (COS)	463-58-1	high toxic		0%						
6	Butane, 1-isocyanato- (C ₅ H ₉ NO)	111-36-4	high toxic		50%, 100%	100%					
7	Oxirane, ethyl- (C ₄ H ₈ O)	106-88-7	high toxic	50%, 100%	50%,100%						
8	1,3-Pentadiene (C ₅ H ₈)	504-60-9	high toxic	50%, 100%							
9	1-Butanamine (C ₄ H ₁₁ N)	109-73-9	high toxic				0%				
10	1,3-Cyclopentadiene (C ₅ H ₆)	542-92-7	high toxic	100%, 50%	100%	100%,150%					
11	2-methyl-2-Propanamine $(C_4H_{11}N)$	75-64-9	high toxic	0%, 150%	100%		100%				
12	Propyleneoxide (C ₃ H ₆ O)	75-56-9	high toxic	0%, 150%							
13	Sulfur dioxide (SO ₂)	7446/9/5	high toxic				150%				
14	2-Butene (C_4H_8)	107-01-7	medium toxic	50%, 100%		50%, 150%	100%				
15	1,4-Dioxane (C ₄ H ₈ O ₂)	123-91-1	medium toxic				150%				
16	Benzene(C ₆ H ₆)	71-43-2	medium toxic	0%,50%,100%, 150%	0%,50%,100%, 150%	0%,50%,100%, 150%	50%,100%				
J Sun, JG Li, T Zhou, K Yang, H Li, X P Qiu, L Q Chen, <i>Nano Energy</i> , 2016.7											

GB5044		GBZ230					WHO/IPCS			
inhalation	via skin	via mouth	Inhalation			via skin	via mouth	via mouth	via skin	Inhalation
LC50	LD50	LD50	Gas	Vapor	Mog					
mg/m³	mg/kg	mg/kg	cm³/m³	mg/m³	mg/m³	mg/kg	mg/kg	mg/kg	mg/kg	mg/m³,4h
< 200	< 100	< 25	< 100	< 500	< 50	<5	< 50	< 25	< 50	< 500
200~2000	100~500	25 ~ 500	100 ~ 500	500 ~ 2000	50~500	5~50	50~200			
2000~20000	500~2500	500~5000	500 ~ 2500	2000 ~ 10000	500~1000	50~300	200~1000	25~200	50~400	500~2000
								200~2000	400 ~ 2000	2000~20000
> 20000	> 2500	> 5000	2500 ~ 20000	10000 ~ 20000	1000 ~ 5000	300~2000	1000 ~ 2000			
			> 20000	> 20000	> 5000	> 2000	> 2000			
	LC50 mg/m ³ < 200 200 ~ 2000 2000 ~ 20000	inhalation via skin LC50 LD50 mg/m³ mg/kg < 200	inhalation via skin via mouth LC50 LD50 LD50 mg/m³ mg/kg mg/kg < 200	inhalation via skin via mouth LC50 LD50 LD50 Gas mg/m³ mg/kg mg/kg cm³/m³ <200	inhalation via skin via mouth Inhalation LC50 LD50 LD50 Gas Vapor mg/m³ mg/kg mg/kg cm³/m³ mg/m³ <200	inhalation via skin via mouth Inhalation LC50 LD50 LD50 Gas Vapor Mog mg/m³ mg/kg mg/kg cm³/m³ mg/m³ mg/m³ mg/m³ <200	inhalation via skin via mouth Inhalation via skin via skin LC50 LD50 LD50 Gas Vapor Mog mg/m³ mg/kg mg/kg cm³/m³ mg/m³ mg/m³ mg/kg <200	inhalation via skin via mouth Inhalation via skin via mouth LC50 LD50 LD50 Gas Vapor Mog	inhalation via skin via mouth Inhalation via skin via mouth via mouth via mouth LC50 LD50 LD50 Gas Vapor Mog mg/m³ mg/kg mg/kg cm³/m³ mg/m³ mg/m³ mg/kg mg/kg mg/kg <200	inhalation via skin via mouth Inhalation via skin via mouth via skin LC50 LD50 LD50 Gas Vapor Mog

Six levels classification including I (very toxic), II (highly toxic), III (toxic), IV (harmful) and V (low toxic) and VI (Few Toxic) level was defined. According to:

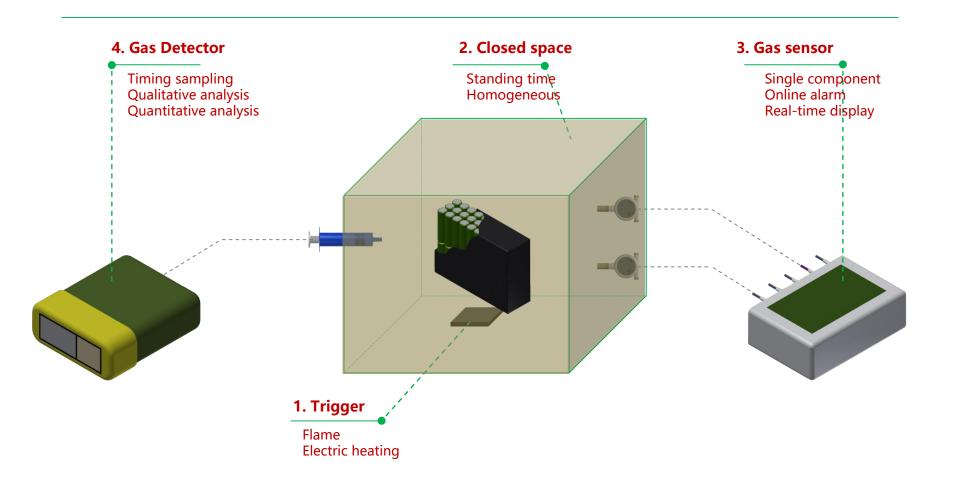
GB5044-1985: Classification of health hazard levels from occupational exposure to toxic substances,

GBZ230-2010: Classification for hazards of occupational exposure to toxicant ,


WHO/IPCS: The User's Manual for the IPCS Health and Safety Guides.

To test and monitor the rank poison gases is very necessary

- Add examinations of the poison gases leaked form Li-ion battery thermal runaway
- Need new designation or criterion to test the rank poison gases leaked form Li-ion battery thermal runaway
- Need modify existing EVS about battery and vehicle


We need new test standard desperately !

Occurrence scenes of Li-ion battery Thermal Runaway toxic leakage

Standard methods to test Li-ion Battery Thermal Runaway toxic gases

Pack Test

We advice to add Li-ion Battery Thermal Runaway toxics inspection items

- Add cell toxics test to all the scenes of the possibility of thermal runaway
- Add pack toxics test to all the scenes of the possibility of thermal runaway
- The rank poison gases need to limit concentration
- The limited concentration should according to GBZ230-2010,WHO/IPCS, and the real test value.
- Database and classification of Li-ion Battery Thermal Runaway toxics need to supplement and unify.