
Isolation Resistance Measurement

March, 2018

Isolation Resistance Measurement

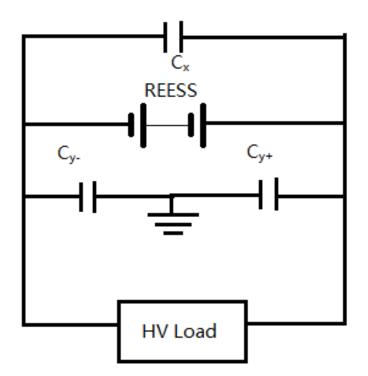
Recommendation:

Step1: Vehicle power on

Step2: Measure V_1 , V_2 by 2 voltmeters with the same internal resistance

Step3: if $V_1 \ge V_2$, insert R_0 as the picture. or if $V_1 < V_2$, insert R_0 between negative side and

electrical chasis.

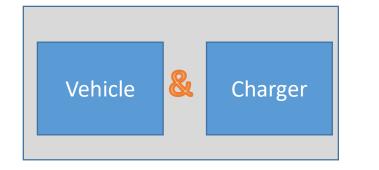

Step4: Measure V_1 , V_2 by 2 voltmeters with the same internal resistance

Step5:
$$R_i = \frac{1}{r} / \frac{1}{R_0 \left(\frac{U_2}{U_2} - \frac{U_1}{U_1} \right)} - \frac{1}{r}$$

$$V_{REESS} = V_1 + V_2 = V_1 + V_2$$
;

 v_1 , v_2 , v_1 , v_2 are stable, that's benefit for accuracy measurement

Low electrical energy



- ◆ The Total Energy (TE_x) of unidirectional single impulse currents in the form of rectangular and sinusoidal impulses or capacitor discharges from high voltage electrical components shall be less than 0.2 J;
- ◆ The energy stored in the Y-capacitors (TEy1, TEy2) shall also be less than 0.2 J

This safety requirement also need to be satisfied during conductive charging?

TE_x<0.2J

& TEy1, TEy2<0.2J