

Frictional couple emissions: evaluation procedure from the REBRAKE project

Ispra, 8 November 2017

45th PMP Meeting

Speaker name: Guido Perricone (Brembo)

- Background
- The REBRAKE project
- The REBRAKE work cycle
- The dyno-bench
- Testing procedure
- Outcomes

The REBRAKE Project

Aim:

- At least 50% particulate matter (PM10) mass reduction from brake wear, in compliance with the EU2020 thematic strategy of 47% reduction of particulate matter by 2020;
- Deeper comprehension of the physical and chemical phenomena underlying the brake wear process, including higher comprehension and analysis of characteristics coarse, fine and UFP particles.

Consortium:

- Project effort: 211 men-months, Total funding: € 2.061.716,43
- Project lenght: 48 months; starting March 2013, 1st

The REBRAKE Work Cycle

11/8/2017 45th PMP Meeting - Ispra (VA) 4

The Dyno-bench

A photograph of the novel bench design. BB: bigger box (door open); F: inlet tube from which clean air enter; T: outlet tube; R: rotor; C: dust-box chamber

Schematic diagram of the test stand. OR: outdoor room; B-I: 0.4m bend tube; F: flow measurement point and filter; BB: bigger box; T: tube; OI: first outlet gap; V: Venturi flow measurement tube; SO: sampling outlet; C: dust-box chamber; A: Air inlet opening; Cy: Cyclone; B-2: 90°, 0.1m bend tube; E: ELPI+® cascade impactor

Source: 2015, Proc IMechE Part D: J Automobile Engineering, p. 1-8

The Dyno-bench - parameters

6

Parameter	Dyno Bench			
Wear	Measured after test (weights/thickness)			
Pressure	Applied			
Torque	Torque transducer			
Friction	calculated			
Disc Temperature	1 k-type thermocouple			
Pad Temperature	2 k-type thermocouples (one for each pad)			
Sliding velocity	Imposed/measured			
Flow rate	Imposed (1 full exchange every 3s)			
PM/PN	Elpi+ (with collection)/47mm filter (Quartz)			

The Dyno-bench – Particles sampling

Particle mass measurement. CY1-2: cyclones; FH: Filter Holder; P1:ELPI+ pump; P2: filter holder pump; V: valve for airflow regulation.

Particle number measurement. CY2: ELPI+ cyclone; ELPI+: Low-Pressure Cascade Impactor.

Testing procedure – Overview

Allows sampling of representative samples for the entire particle size range

Dyno bench test cycle

 $PM_{10}[g] = w_{test_fin} - w_{filter_in}$

$$\Delta m_{pad}[g] = m_{pad_fin} - m_{pad_in}$$
$$\Delta m_{disc}[g] = m_{disc\ fin} - m_{disc\ in}$$

Testing procedure – Isokinetic sampling

Needed to have a representative sample for the entire particle size range

Isokinetic sampling

$$v_{sample} = v_{sampling}$$

Super isokinetic sampling

Sub-isokinetic sampling

$$v_{sample} < v_{sampling}$$

The following conditions need to be verified:

- V sample = V sampling
- Laminar flow
- Streamlines have to be parallel to the sampling probe

Source: Hinds (1999)

Testing procedure – PN measurement

An Electrical Low Pressure Impactor (ELPI+®) measures particles number on-line. A cyclone filters all the particles bigger than 10µm.

(Electrical/Impactor)

Particles are collected on aluminum foils to allow subsequent chemical characterization

Testing procedure - PM measurement

A 47mm Quartz filter is used for mass measurements

$$w_{test} = w_{filter} + w_{PM10}$$

$$PM10[g] = w_{test} - w_{filter}$$

Testing procedure – P2 cycle

Modified SAE J2707 - Part B:

- wear procedure
- it considers only urban driving conditions
- reduced number of stops
- cleanings are introduced between blocks

Block	Initial speed [km/h]	Final speed [km/h]	Init disc temp. [°C]	Decel [g]	No. of stops
Burnish	50	4	100	0.25	100
5min cleaning					
Town block #1	50	4	150	0.25	20
5min cleaning					
Country road block #1	80	4	200	0.35	20
5min cleaning					
Country road block #2	100	4	125	0.4	20
5min cleaning					
Town block #2	50	4	150	0.25	20
5min cleaning					
Country road block #3	100	4	125	0.4	20

Testing procedure – P5 cycle

		Section	Block	v _{initial} [km/h]	v _{final} [km/h]	$T_{disc_initial}[^{\circ}C]$	Dec. [g]	No. of stops		
	5' Cleaning									
	00-	25 J/kg	1.1	36	26	70	0,16	2		
	0		1.2	36	26	90	0,16	18		
	ĺ		1.3	36	26	110	0,16	83		
			1.4	36	26	130	0,16	56		
			1.5	36	26	150	0,16	24		
			1.6	36	26	170	0,16	8		
	_		2.1	52	28	70	0,23	5		
			2.2	52	28	90	0,23	16		
	Ξ	75 1/kg	2.3	52	28	110	0,23	22		
	<u></u>	75 J/kg	2.4	52	28	130	0,23	25		
	ne		2.5	52	28	150	0,23	12		
	Specific energy [J/kg]		2.6	52	28	170	0,23	8		
	cif		3.1	57	5	70	0,25	2		
	Š		3.2	57	5	90	0,25	3		
	•	125 J/kg	3.3	57	5	110	0,25	6		
			3.4	57	5	130	0,25	8		
			3.5	57	5	150	0,25	1		
		175 J/kg	4.1	70	17	110	0,31	1		
			4.2	70	17	130	0,31	2		
			4.3	70	17	170	0,31	1		
		225 J/kg	5.1	79	20	110	0,24	1		
		5' Cleaning								

Outcomes

PN - Particle number (#/cm³)

PM - Particle mass (g)

Thank you!

www.rebrake-project.eu www.lowbrasys.eu