45th PMP Meeting 07th – 08th November 2017 Joint Research Centre, Ispra

Feasible Methodology for Brake Wear Particles Measurement and Characterization

Hiroyuki Hagino Japan Automobile Standards Internationalization Center (JASIC)

Uncertainty of Brake Wear Particle Emissions

Feasible Sampling Methodology JASO Standardization Concept

Next Steps

Hypothesis of Brake Particle Emission Mechanism

- ◆ Nanoparticles (Dp< 100 nm): Nucleation originated from Gas
- Fine/ Coarse Particles : Debris and Milled Particles under Abrasion Processes
- Near Surface / Different form Real World Air Samples ?

Ref: Namgung et al., Environ. Sci. Technol. 50, 3453-3461 (2016)

Uncertainties U of Brake Wear Particle Emissions

- ♦ The Uncertainties might be distinguish by the three Parameters
- Empirically, Simplified System will be much easier to Control Data Quality
- Concentration Levels detected by Instruments depends on Air Flow Rate

Δ

Comparison of Sampling Methodologies

There are Sweet Spots Flow Rate for Enclosure Design on High Efficient Sampling
 JARI / JASO toward the Feasible Sampling Methodology based on Low Flow Rate

Contents	JARI	JASO (JSAE)	PMP/ISO Discussion
Goal	Research for Air Quality	National Standards for Advance Production Equipment, Improve quality, etc	Suggestion Common Test Procedure for Sampling and Assessing
Concepts	Feasible Methodology	Feasible Methodology Correlative Concept (Traceable to Wear Mass)	Common Test Procedure
Sampling Design			
Enclosure / Sampling Lines	JARI (See Later)	JARI (See Later) (Fixed)	7 or more Different Design
Air Flow	0.5 ~ 1 m ³ /min (<u>Fixed</u>)	1 m ³ /min (<u>Fixed</u>)	4 ~ 56 m³/min
Sampling Efficiency	PM ₁₀ , PN Coverage (See Later)	PM ₁₀ , PN Coverage (See Later)	PM, PN Coverage
Filtered Air	20±5 ^⁰ C, RH<35%	Room Condition	20±5 ^⁰ C, RH 50±10 %
<u>Measurements</u>			
PM	PM ₁₀ , PM _{2.5} Compositions (XRF, OCEC, TOF-AMS, ICP-TOF etc)	Highest Priority (Fixed) Compliance with WHO Air Quality Guidelines PM ₁₀ , PM _{2.5}	РМ
	CPC, OPS, APS, FMPS, DMS, EEPS, ELPI etc	Low Priority (Fixed) Discussion in Next Stage	CPC, OPS, APS, EEPS, ELPI, etc

Air Flow Rate vs Emissions

- There no Significant Difference of Mass Emissions with Flow Rate
- If Emission is Constant, <u>High Flow Rate will make the Low Concentration</u> <u>detected by instruments (Low Concentration in Sampling Tunnel)</u>

Air Flow Rate vs PM, PN Measurements

♦ High Flow Rate may Reduce a Reliability, Increasing Uncertainty

To secure the accuracy of Instruments for measuring PM& PN, JARI Methodology chooses Low Flow Rate Condition

Ref : Hagino et al., EuroBrake2018 in Presentation

Brake Wear Particle Size

- Flow Rate 0.5 m³/min (0.05 m/s), Residence Time < 25s
- Low –Pressure Impactor Sampling for Measurement of Mass Emissions
- ♦ The Difference for Mass Size Distributions are within Sampling Error

Ref : Hagino et al., EuroBrake2017 in Presentation

Emission Levels: Road vs. Dyno

- **Road Tunnel:** Flow Rate 4.2 m³/min (1.9 m/s), Residence Time < 520s
- Dyno.: Flow Rate 0.5 m³/min (0.05 m/s), Residence Time < 25s</p>
- Comparable Emission Levels between Traffic Road and Dyno. (e.g. Sb)

Traffic Road Tunnel

Ref : Hagino et al., EuroBrake2017 in Presentation

Simulated Urban City Driving Cycle Tests

 Comparable Data to Tail-Pipe Emission for the First Step e.g. WLTC test cycle
 Non Tail-Pipe Emission : Good Correlation PM mg/km vs PN #/km Detection Levels in 10⁹ #/km

Uncertainty of Brake Wear Particle Emissions

Feasible Sampling Methodology JASO Standardization Concept

Feasible Sampling Methodology

Uniformed Model for Society of Automotive Engineers of Japan (JSAE)
 JSAE Brake Experts were decided to use <u>New Compact JARI model</u> for PM
 Aim: Attachable Enclosure and Sampling System for All Brake Suppliers
 JSAE will complete <u>JASO Standard</u> based on JARI Methodology for PM by FY 2019
 JARI can provide the design, you can refer and visit our laboratory to see this system

Feasible Sampling Methodology

- Uniformed Model for Society of Automotive Engineers of Japan (JSAE)
- ♦ JSAE Brake Experts were decided to use JARI model and measure for PM
- ♦ Aim: Attachable Enclosure and Sampling System for All Brake Suppliers

PM PN Back Ground

- Renew Version Enclosure (Careful Sealing) can be Reduce PN background
- Some Particles originated from Dyno. Connections Still Exists But very low concentration (<1 #/cm³)

Cycle: NEDC, 3 Repeated

PM data: DustTrak II 8530 corrected by gravimetric measurement PN data: TSI CPC 3775 ($D_{50} = 4$ nm) without pretreatment

Particle Collection Efficiency

- PM₁₀ and PN Measurement Coverage
- Next Step: Needing to Evaluate by Testing Aerosol (PSL)

Uncertainty of Brake Wear Particle Emissions

Feasible Sampling Methodology JASO Standardization Concept

Next Steps

Comparison of Brake Wear Testing

• Four Labs tested for NAO Disc using Existing Dynamometers

Rotor/Brake Temperature did not affected by Lower Flow Rate Condition

Next Step: PM Emission vs. Estimated PM Emission

Labs.	Difference Pad Thickness	Max Temperatures	Air Flow	Emissions (Calculation)
4 Labs. Only Dyno . Testing	0.11-0.23mm	Rotor 148-163 °C Depth 0.5 or 1 mm	3 m/s	PM ₁₀ 2.1 ±1.2 g/km PN 1.6±0.9×10 ¹⁰ #/km estimated by JARI test data
Ref. JARI test	0.069-0.095 mm	Brake Pad 78-120 °C Depth 1 mm	0.05 m/s 0.55 m³/min	PM ₁₀ 1.5 ±0.4 mg/km PN 1.6±0.4×10 ⁹ #/km

Testing Conditions

Pre-conditioning:

Ini. 65km/h, Decel. 3.5m/s², 200 times repeated Vehicle:

Weight 1,130kg, Ratio 8:2, Eff. Tire Rad. 0.298m Brake:

NAO Disc (Front)

Test Cycle:

WLTC (JARI Emission Testing), Simulated-WLTC (Only Dyno. Testing)

Ref : Hagino et al., EuroBrake2018 in Presentation

Labs. Difference vs. Air Flow Rate

- ◆ Labs. Difference estimated by JARI Data
- Needing to measure of the Variation without being covered with Instrumental Uncertainties

Cycle: simulated-WLTC, 30 Repeated

PM data: DustTrak II 8530 corrected by gravimetric measurement

PN data: TSI CPC 3775 (D_{50} = 4 nm) without pretreatment

Ref : Hagino et al., EuroBrake2018 in Presentation

Conclusions & Next Steps

Conclusions:

- •Importance of Flow Rate to Secure the accuracy of Instruments (Low Flow Rate Sampling (0.5-1 m³/min) Recommended)
- •Dyno. Data Comparable with Traffic Road (Real World Emission)
- •JASO will be complete by 2019 (March of 2020)
 - **Based on the Feasible Sampling Methodology (Renew Compact JARI Model)**

Next Steps:

JARI

- •Possible Round Robin with TF-II Community
- Sampling Methodology

(
☐ Cal., □ PSL Testing)

(TBD)

- •Driving Cycles (
 ☐ JC08,
 ☐ WLTP,
 ☐ NEDC (This Year),
 ☐ PMP)
- •Repeatability (Uncertainties) of Instruments (TBD) JASO (JSAE, 4 Labs)

Round Robin using JARI Sampling Methodology

