The European Commission's science and knowledge service

32

·

Joint Research Centre

de.

EU-Commission JRC Contribution to EVE IWG

M. De Gennaro, E. Paffumi

25th Meeting of the GRPE Informal Working Group on Electric Vehicles and the Environment (EVE)

January 8th 2018, Geneva (CH)

Presentation Summary (1/2)

Follow-up of the JRC activities for contribution to the EVE IWG under the "in-vehicle battery ageing" topic

Summary after Vienna (Oct. 2017), i.e. what's old:

- Literature review and ageing models;
- Implementation of the capacity fade models in TEMA;
- Battery durability scenarios presented;

Presentation Summary (2/2)

Follow-up of the JRC activities for contribution to the EVE IWG under the "in-vehicle battery ageing" topic

Current Status (Jan. 2018), i.e. what's new:

- Finalisation of the durability scenario analysis;
- In-vehicle cross-validation of the model's results against experimental data from Canada;

Performance based models (SotA)

	Capaci	ty fade	Power fade					
	Calendar	Cycle			Calendar	Cycle		
		Wang et Al. (2	011);		Sarasketa-Zabala et Al. (2013);			
LiFePO ₄	Sarasketa-Zabala et Al. (2013/14);	Sarasketa-Zabala (2013);	et	AI.				
		Sarasketa-Zabala (2015);	et	Al.				
NCM + spinel Mn	Wang et A	Al. (2014);			-	-		
NCM – LMO	-	Cordoba-Arenas (2014);	et	AI.	-	Cordoba-Arenas Al. (2015);	et	

Calendar + Cycle (4 Combinations):

- #1 (LiFePO₄): Sarasketa-Zabala et Al. (2013/14) model for calendar plus Wang et Al. (2011) model for cycle;
- #2 (LiFePO₄): Sarasketa-Zabala et Al. (2013/14) model for calendar plus Sarasketa-Zabala et Al. (2015) model for cycle;
- #3 (NCM + Spinel Mn): Wang et Al. (2014) for calendar plus Wang et Al. (2014) for cycle;
- #4 (NCM-LMO): Wang et Al. (2014) for calendar plus Cordoba-Arenas et Al. (2015) for cycle;

Implementation of the Performance based models into TEMA (assumptions, 1/2)

TEMA Structure		PHE	V	BEV 1		
Pre-Processor Module 0						
Module 1 Statistical Mobility			R			
Module 2 Hybrid/Electric Vehicles and Recharge Behavioral Models analysis		Vehicle Type	Battery Size [Wh]	Battery Shape	No. of Cells [#] and Type	
Vehicles usability	T-Shaped	PHEV	16,000	T-shaped	192 – pouch	
analysis and UF Cycle Ageing	Parallelepiped	BEV 1	24,000	Parallelepiped	192 – pouch	
Module 3 Vehicles energy demand analysis	Flat-shaped	BEV 2	85,000	Flat	6,912 - cylindrical	
Module 3 Vehicles energy demand analysis Module 4 Infrastructure Design and V2G			sable Energy at BoL [Wh]	Usable Ene at EoL [Wh		
	T-shaped (PHEV)		12,000	9,600		
Driving, Evaporative and	Parallelepiped (BEV	1)	18,000	14,400		
Cold-Start emissions module	Flat-shaped (BEV 2	2)	63,750	51,000		

25th Meeting of the GRPE EVE IWG January 8th, 2018, Geneva, (CH)

Vehicle Electric Architecture (examples)

Electric

Architecture

2P-96S

48S-2P-2S

16S-72P-6S

Energy consumption [Wh/km]

205

210

265

BEV 2

Reference Voltage [V]

365

360

345

Reserve [% of

ttery capacity] 25%

15%

15%

****	European
****	Commission

Implementation of the Performance based models into TEMA (assumptions, 2/2)

The models have been implemented by adopting the following assumptions:

- the calendar and cycle capacity fades are calculated at cell level (uniform ageing assumption);
- the model assumes average quantities in the reference period per each vehicle for DOD, C-rate, Ah-throughput and temperature;
- DOD and temperature are assumed equal to the battery values, consistently with the uniform fade assumption, whilst the C-rate and Ah-throughput are scaled from the battery level down to the cell;
- the battery temperature is regulated by the BMS between 22 °C and 27 °C during the driving and recharging phases (cycle capacity fade modelling), whilst it assumes the ambient temperature in the parking phase (calendar capacity fade modelling);
- The model capacity fade is calculated at the net of the capacity fade reserve. i.e.:

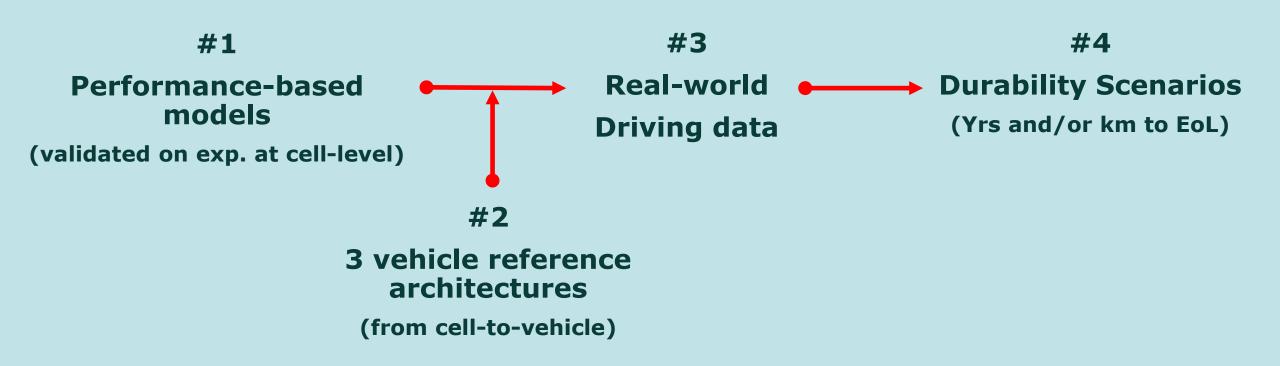
- 5 recharge strategies adopted:
 - \checkmark Str. 1 = Long Stop Random AC;
 - \checkmark Str. 2 = Short-Stop Random DC;
 - \checkmark Str. 3 = Night AC Str. 4 = Smart AC;
 - \checkmark Str. 5 = Long-Stop AC 3-phases;

Results (Durability and EoL – tabulated)

Years of Life

Mileage @ EoL

					0 - km/n		500 – km/n	1,000 nonth	1,000 km/n	-1,500 10nth		- 2,000 10nth	· · ·	00+ 1onth						0 - 500 km/month	500 – 1,000 km/month	1,000 -1,500 km/month	1,500 – 2,000 km/month	2,000+ km/month
					Years to	Years to 100,000	Years to	Years to 100,000	Years to	Years to 100,000	Years to	Years to 100,000	Years to	Years to 100,000				#1	LiFePO ₄	56,947	83,657	-	-	-
					EoL	km	EoL	km	EoL	km	EoL	km	EoL	km	#1	PHEV-1		#2	LiFePO ₄	\leq 50,000	\leq 50,000	-	-	-
			#1	LiFePO ₄	≥20		11.9					-		-	5.8% fleet share		#3	NCM-Mn	\le 50,000	63,270	-	-	-	
-	PHEV-1		#2	LiFePO ₄	17.0 6.1		-		-	-		tegy	6	lel	#4	NCM-LMO	\leq 50,000	102,638	-	-	-			
#1	5.8% fleet share		#3	NCM-Mn	14.2	≥ 20	9.0	14.2			-	-	-		ate	ate	lod	#1	LiFePO ₄	\leq 50,000	51,592	59,638	-	-
egy		del	#4	NCM-LMO	13.5 6.6 4.7	-			-		Str	BEV-1		#2	LiFePO ₄	\leq 50,000	\leq 50,000	\leq 50,000	-	-				
at	ğ	Io	#1	LiFePO ₄			-		-			ng	#3	NCM-Mn	\leq 50,000	\leq 50,000	58,369	-	-					
Sti	BEV-1	<u>م</u>	#2	LiFePO ₄	9.6	≥ 20	1/8	≤ 3.0	7.9				50 12.1% fleet share	gei	#4	NCM-LMO	\leq 50,000	67,226	104,050	-	-			
50	12.1% fleet share	ein	#3 #4	NCM-Mn NCM-LMO	8.5 5.8 12.0 4.6 7.5 9.7 8.6 8.6 8.2		-		-		ha		Ā	#1	LiFePO ₄	157,504	≥300,000	≥300,000	≥300,000	≥300,000				
lar	BEV-2	₩ B	#4	LiFePO ₄	≥ 20		≥20		≥ 20		≥ 20	-	≥ 20	-	Rech	BEV-2		#2	LiFePO ₄	176,336	≥300,000	≥300,000	≥300,000	≥300,000
ech			#2	LiFePO ₄	> 20		≥ 20 ≥ 20	> 2	≥ 20 ≥ 20		> 20		> 20		P	53.6% fleet share		#3	NCM-Mn	\leq 50,000	120,037	205,502	297,360	≥300,000
2	DE V-2 53.6% fleet share		#3	NCM-Mn	12.6		5.0	16.0 3.9					#4	NCM-LMO	$\leq 50,000$	113,767	196,819	291,413	≥300,000					
			#4	NCM-LMO	12.1		12.7		13.6		14.7		16.1					#1	LiFePO ₄	≤ 50,000	54,771	63,396	69,139	74,819
			#1	LiFePO ₄	13.0		6.4		4.5		3.5		≤ 3.0		#2	BEV-1	el	#2	LiFePO ₄	≤ 50,000	$\leq 50,000$	$\leq 50,000$	≤ 50,000	\leq 50,000
¥	BEV-1	del	#2	LiFePO ₄	9.1	≥ 20	3.8	11.7	≤ 3.0	7.1	≤ 3.0	5.1	≤ 3.0	3.7		24.8% fleet share	odel	#3	NCM-Mn	$\leq 50,000$	≤ 50,000	54,943	61,237	69,475
i.	24.8% fleet share	9	#3	NCM-Mn	7.9	- 20	5.2	11.7	3.9	/.1	3.1	5.1	≤ 3.0	5.7	Str.		Z	#4	NCM-LMO	$\leq 50,000$	67,608	100,025	130,376	165,670
S		2	#4	NCM-LMO	9.3		7.9		7.1		6.6		6.2				ng	#1	LiFePO ₄	147,804	≥300,000	≥300,000	≥300,000	≥300,000
Ę	DEVA	ein	#1 #2	LiFePO ₄	≥ 20		≥ 20		≥ 20 ≥ 20		≥ 20		≥ 20		Rech.	BEV-2	geing	#2	LiFePO ₄	171,195	≥300,000	≥300,000	≥300,000	≥300,000
Rec	BEV-2 79.8% fleet share	Age	#2 #3	LiFePO₄ NCM-Mn	≥ 20 12.1	≥ 20	≥ 20 11.9	11.0	≥ 20 11.8	6.8	≥ 20 11.6	4.8	≥ 20 11.3	3.4	ľ ž	79.8% fleet share	A5	#3	NCM-Mn	≤ 50,000	107,766	174,392	239,644	≥300,000
	75.070 neet share	4	#3 #4	NCM-IMI NCM-LMO	12.1		11.9		11.8		11.0		11.5					#4	NCM-LMO	≤ 50,000	103,238	167,003	231,381	≥300,000


Legend

0114	
	EoL below 5 years;
	EoL between 5 and 10 years;
	EoL above 10 years;

25th Meeting of the GRPE EVE IWG January 8th, 2018, Geneva, (CH)

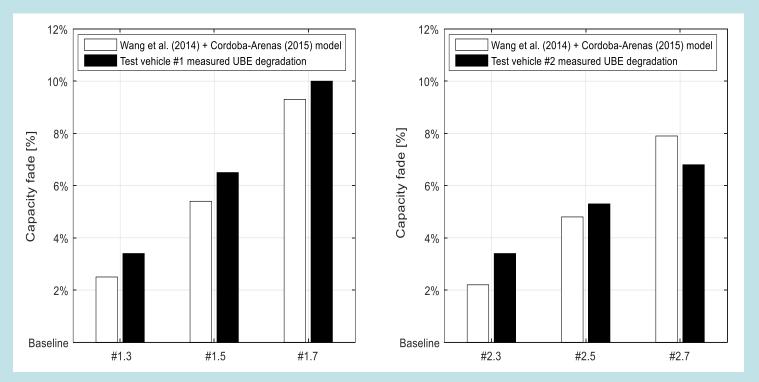
Summary of the logical passages

Experimental data from Canada (description)

	Test stage ID	Test-Type	Start Date	End Date	Recharge Level 2 [#]	Recharge Level 3 [#]	Average Recharging Power [kW]	Driven Distance [km]	Driving Time [h]	Recharging Time [h]	Resting Time [h]		
	#1.1	In-Lab	05/03/2015	26/04/2015	26	-	4.2	3,021	50.9	115.8	1,081.3		
[est vehicle #1 (manufact. 09/2014)	#1.2	On-Road	27/04/2015	30/08/2015	-	86	22.0	10,365	218.8	64.7	2,716.5		
Test vehicle (manufact. 09/20	#1.3	In-Lab	31/08/2015	14/09/2015	8	-	4.5	1,128	19.0	38.2	278.7		
ehi act.	#1.4	On-Road	15/09/2015	07/04/2016	-	240	14.9	18,683	397.5	214.9	4,307.6		
st v nufi	#1.5	In-Lab	08/04/2016	24/04/2016	17	-	3.9	1,339	22.9	50.9	310.3		
Te.	#1.6	On-Road	25/04/2016	24/10/2016	-	157	20.8	13,858	301.9	88.7	3,977.4		
	#1.7	In-Lab	25/10/2016	04/11/2016	5	-	4.4	1,184	20.9	41.0	178.1		
				483	-	-	49,578	1,031.8	614.2	12,849.9			
			Run-J	(n (non-logged)	-	-	-	1,663	-	-	4,384.8		
	#2.1	In-Lab	27/03/2015	10/05/2015	16	-	4.1	1,764	30.0	70.2	955.7		
014)	#2.2	On-Road	11/05/2015	14/09/2015	118	-	4.3	10,971	224.2	333.2	2,466.6		
icle	#2.3	In-Lab	15/09/2015	01/10/2015	11	-	4.1	1,298	22.7	50.3	311.0		
reh act.	#2.4	On-Road	02/10/2015	08/05/2016	241	-	4.5	18,716	364.8	700.3	4,190.9		
Test vehicle #2 (manufact. 11/2014)	#2.5	In-Lab	09/05/2016	29/05/2016	10	-	4.1	1,311	22.8	46.1	411.1		
Le l	#2.6	On-Road	30/05/2016	08/11/2016	143	-	4.2	12,770	271.2	385.7	3,231.0		
	#2.7	In-Lab	09/11/2016	23/11/2016	14	-	4.2	1,334	22.5	46.7	266.7		
				Total (logged)	553	-	-	48,164	958.2	1,632.7	11,833.1		
			Run-l	(n (non-logged)	-	-	-	2,214	-	-	3,384.9		
	To CO												

	Test stage ID	Test-Type	Aver. weighted battery temperature [K]	Average air temperature [K]	Average weighted C-rate	Battery Ah-throughput [Ah]	SoC _{min} [%]	UBE degradation since stage x.1 [%]	Odometer reading [km]	Age of the car since manufacture [yrs]
	#1.1	In-Lab	288.9	284.9	0.31	2,672.8	7.7	0.0%		
Test vehicle #1 (manufact. 09/2014)	#1.2	On-Road	300.8	291.0	0.44	8,655.9	42.5			
	#1.3	In-Lab	304.1	300.4	0.32	987.6	4.6	-3.4%	16,177	1.04
	#1.4	On-Road	287.7	274.9	0.43	18,630.8	41.6			
	#1.5	In-Lab	298.0	297.2	0.29	1,127.7	12.0	-6.5%	36,199	1.65
Tes (ma	#1.6	On-Road	297.8	290.2	0.48	11,317.4	39.7			
-	#1.7	In-Lab	303.0	297.6	0.31	1,018.0	10.2	-10.0%	51,241	2.18
	#2.1	In-Lab	286.8	283.8	0.33	1,626.2	7.5	0.0%		
) #2 014)	#2.2	On-Road	299.5	292.6	0.22	8,970.5	37.6			
Test vehicle #2 (manufact. 11/2014)	#2.3	In-Lab	296.4	291.9	0.33	1,200.3	4.9	-3.4%	16,247	0.92
	#2.4	On-Road	282.3	277.3	0.25	18,391.2	36.2			
	#2.5	In-Lab	301.1	296.7	0.32	1,117.4	8.7	-5.3%	36,247	1.58
Te: (ma	#2.6	On-Road	295.9	286.4	0.22	10,433.5	41.1			
	#2.7	In-Lab	302.2	298.9	0.32	1,143.1	7.3	-6.8%	50,378	2.06

Source: Presentation from Transport Canada @ EVE-22 (Ann-Arbor, April 2017)



Experimental data from Canada (Validation)

In-vehicle validation of the models (assumptions):

- Uniform T, DoD, C-rate and Ah-throughput;
- T, DoD @ battery level;
- C-rate and Ah-throughput @ cell level;
- Q_{loss-total} = Q_{loss-cal.} + Q_{loss-cycle} Reserve(10%);
 NCM-LMO model (closer to real LEAF chemistry i.e. LiMn₂O₄ with LiNiO₂)

The results will be described in the scientific paper:

"Capacity fade of Lithium-ion automotive batteries under real-world use conditions", planned for submiss. in Jan. 2018.

18A

Thank you for the attention

Contacts Info: EC DG JRC DIR-C ETC Sustainable Transport Unit michele.degennaro@ec.europa.eu elena.paffumi@ec.europa.eu

