10 July 2018

PRESENTATION OF

INTERNATIONAL ORGANIZATION OF MOTOR VEHICLE MANUFACTURERS

Various Technical Topics on the development of ASEP

L_{urban}-Assessment

Informal Working Group ASEP Report Paper on Interpretation of ASEP Paragraph 6.2.3 last sentence

Introduction

- IWG ASEP has prepared a report paper to provide guidance for the understanding and interpretation of ASEP paragraph 6.2.3 last sentence.
- > An explanation is provided for "significant deviation" in terms of sound, leading to a suggested ΔL_{ASEP} of 6 decibel.
- ➤ While the ΔL_{ASEP} of 6 decibel is directly applied for the "Slope-Assessment", reduced values are suggested for the alternative assessment method the L_{urban}-Assessment".
- This small presentation is intended to provide help for better understanding.

Concept of the Alternative L_{urban}-**Test**

Concept of the Alternative Lurban-**Test**

Acceleration Potential per Gear

- > The acceleration is gear dependant.
- Low gears provide high acceleration potentials at low speeds, while high gears provide limited acceleration potential at higher speeds.
- The IWG ASEP suggests 2 dB for the gears covered by the ASEP control range Annex 7 paragraph 2.5, and 3 dB for any other gears.
- The gears included in the ASEP control range are lower gears with higher acceleration capabilities, mostly 2nd and 3rd gear.
 - When making a rating between the acceleration potiential in these low gears versus the applicable aurban, the ratio is mostly not exceeding the factor 3.
 - > That means a ΔL_{ASEP} of 6 dB would be quoted with 2 dB.
- All other gears higher gears will have much less acceleration performance. The ratio would be much lower than the factor 3. In lack of data, a factor 2 is estimated.
 - > For these gears a ΔL_{ASEP} of 6 dB would be quoted with 3 dB.

Acceleration Potential in Low Gears

Ratio Between Acceleration Potential in 2nd & 3rd Gear versus Urban Acceleration

Limitation Concept for L_{urban} Assessment

Sound Prediction Model

Correction to the Model

Clarification on $\triangle L_{DYN}$ Calculation

Two times dynamic load considered ???

- The formula shall calculate the delta dynamic between no load and full load.
- Within the energetic calculation the L_{DYN,REF,NL} is incorrectly considered and shall be deleted.
- There is little impact of this mistake, as L_{DYN,REF,NL} is always low, mostly 15 dB or more below the energy of tyre rolling sound and meachanical sound.

E16 = Lwot,rep	E14 = vBB,WOT,REP	E13 = NBB,WOT,REP	E28 = LREF,PT,NL
E17 = Lcrs, rep	E22 = LREF,TR	E31 = NSHIFT,PT,NL	E35 = LREF,DYN,NL
E23 = Slopecrs,<50km/h	E29 = Slope,PT, <nbb,crs,rep< td=""><td>E27 = NBB,CRS,REP</td><td></td></nbb,crs,rep<>	E27 = NBB,CRS,REP	