September 2018

### PRESENTATION OF



**INTERNATIONAL ORGANIZATION OF MOTOR VEHICLE MANUFACTURERS** 

## **Additional Sound Emission Provisions 2.0**

Introduction of the Sound Emission Prediction Model GRB Informal Working Group ASEP #9



### **ASEP Revision 2.0 - Expectations**

#### **Contracting Parties**

- Improve efficiency of ASEP
- ASEP shall become mandatory during Type Approval
- Broaden the boundary conditions
- Check need for
  - Defeat device provisions
  - Not to Exceed Concepts (NTE)

#### **Automotive Industry**

- Simplify ASEP
- Reduce work load
- Safe qualification about ASEP compliance, especially with "normal" products
- > ASEP shall follow physics



## **ASEP Concept Based on a Physical Expectation Model**

- A compromise between an extended test area and a reduced test burden is feasible, when tests are selected randomly and when after each individual test run a direct compliance assessment is available.
- Already existing elements of the today's ASEP assessment are integrated into a new approach:



## **Sound Prediction Model - Basic Considerations**

Tyre
Base Mechanic

- The two elements together create the "physical" base model for a behavior of any internal combustion engine vehicle.
- These two models will form the minimum sound emission of a vehicle.
- This sound emission is given by physics an qualified / justified by the type approval test according to Annex 3 and controlled by the limit values.

3 Dynamic

- The dynamic model covers all sound behavior, that is linked to acceleration (load) conditions
- It covers tyre torque effects, powertrain dynamics and gas flow dynamics.





## **)** Tyre Rolling Sound - Modelling



- Tyre rolling sound can be described with good accuracy by a logarithmic regression.
- Tyres may as well have smaller resonances, by the typical deviation from the regression is rather small.
- Typical regression qualities are R<sup>2</sup> > 0.98

## The "Prediction Model" for the Tyre Rolling Sound

The mathematical function is:

$$L_{TR,NL} = (slope_{TR}) * LOG_{10}(v_{test} / 50) + (L_{REF,TR})$$

There will be a **slope<sub>TR,min</sub>** for test speeds below 50 km/h and a **slope<sub>TR,max</sub>** for speeds above 50 km/h.

The differentiation accounts for the unknown behaviour of the tyre rolling sound.

The  $L_{\text{REF,TR}}$  is a fraction of the steady speed test result of Annex 3  $L_{\text{CRS,i}}$ .

$$L_{REF,TR} = 10 * LOG_{10}(X\%^* 10^{(L_{crs,i}/10)})$$

How much percent (**x%**) of the steady speed result is used, needs further investigation and might be defined differently for the vehicle categories.

# The tyre rolling sound's load dependency is covered under the dynamic model 3.



# **Power Train Base Sound Modelling**



2) Base Mechanic - Modelling



- For determination of the power train base mechanic, there are two possibilities:
  - stationary run-up in far field
  - cruise-by measurements at low gears, e.g. 1st gear
- It is important to eliminate the influence of the tyre rolling sound and to suppress any gas flow dynamics.
- Both methods provide almost the same result and can be used to elaborate the powertrain base mechanic model.

# The "Prediction Model" for the Power Train (No Load)

The mathematical function is:

$$L_{PT,NL} = (log_{10}(n_{test} + n_{shift})) / (n_{wot,ref} + n_{shift})) + (log_{10}(n_{test} + n_{shift})) + (log_{10$$

A **slope<sub>PT,min</sub>** for test engine speeds below n<sub>BB',REF</sub> and a **slope<sub>PT,max</sub>** for speeds above n<sub>BB',REF</sub> is introduced.

The differentiation accounts for the unknown behaviour of the power train. An engine speed shift component n<sub>shift</sub> is introduced for an optimized curve fitting for the power train model The parameter  $L_{REF,NL}$  is the remaining part of the steady speed test of Annex 3  $L_{CRS,i}$  that was not used in the tyre model before.

 $L_{\text{REF.NL}} = 10^{*}LOG((100\% - X\%)^{*}10^{(\text{LCRS},1/10)})$ 

# The power train base mechanic's load dependency is covered under the dynamic model 3.

Page 10







## The Dynamic Model

- > The dynamic model covers all energy generated under load, respectively acceleration:
  - a) All gas flow components (intake and exhaust), no load and load
  - b) Change of the power train mechanic sound with the load
  - c) Tyre torque effects
- The load response from the power train and the torque effect are relatively small compared to the gas flow components from intake and exhaust.

# 3 The Dynamic Model

The mathematical function is:

for the dynamic model

**slope<sub>DYN,max</sub>** for speeds above **n<sub>BB',REF</sub>** is introduced.

The differentiation accounts for the unknown behaviour of the power train.

### $n_{BB',REF} = n_{BB',WOT,i}$





## The Partial Throttle Model

- For a full dynamic model it is necessary to consider a partial throttle model.
- One difficulty is, that for many situations an already partially opened throttle means already full throttle.
- While we consider in Annex 3 that the link between the constant speed test and the acceleration test is linear, we need for ASEP a different model with a high increment from low throttle positions and a 90% load saturation at 50% throttle condition.
- Another difficulty is the question, how to determine the partial throttle condition.
  - This is most correctly done, by the determination of the position of the accelerator. His is design neutral and more accurate compared to the control of the throttle opening
  - Alternatively, this might be determined by the determined acceleration relative to the maximum acceleration of a given gear or gear ratio.
- Here is more research needed.
- As a simplification, one might apply the full throttle curve as well to any partial throttle conditions.



 $\Delta L_{\text{partial}} = (1-0,111/(0,111+\text{Load}\%/100)/(1-0,111)$ 



## **Integration of all Modules**

- Before the ASEP evaluation, it is necessary to carry out the Annex 3 type approval test
  - > The parameter to be reported are:  $L_{wot}$  and  $L_{crs}$  from the lower or single gear, the acceleration (actually PP-BB), the vehicle speed  $v_{BB}$ , the engine speed  $n_{BB}$ .
  - For the gear ratio, the maximum acceleration must be known to determine the load condition.
- The expectation level is then calculated

$$\mathsf{L}_{exp} = 10 * \mathsf{LOG} \left( 10^{0,1*} \mathsf{L}_{TR,NL} + 10^{0,1*} \mathsf{L}_{PT,NL} + 10^{0,1*} (\mathsf{L}_{DYN,NL} + \Delta \mathsf{L}_{DYN} \right) + \Delta \mathsf{L}_{MARGIN}$$

Compliance is achieved when

$$L_{test}$$
 ( $v_{test}$ ,  $a_{test}$ ,  $n_{test}$ )  $\leq L_{exp}$  ( $v_{test}$ ,  $a_{test}$ ,  $n_{test}$ )