PRESENTATION OF

INTERNATIONAL ORGANIZATION OF MOTOR VEHICLE MANUFACTURERS

Partial Load & Performance Modelling ASEP Revision 2.0

Actual Status of the DATABASE November 2018

- ❖ Database contains now 54 dataset (15 new vehicles since July 2018)
 - 41 vehicles from 13 sources, PMR range 40 kW/t to 330 kW/t
 - Some vehicles with multiple dataset (full load and part load)
 - Mostly M1 vehicles, few N1
 - ICE (mostly Petrol), HEV, PEV

Model covers

- ICE, HEVs and PEVs (via simulated engine speed)
- Part load (not explained in details to IWG ASEP by now)
- Performance va

Various Analysis Diagrams and Tools

- Diagram: Sound vs Engine Speed,
- Diagram: Sound vs Performance,
- Diagram: Performance vs Speed,
- ❖ Diagram: Measured Sound vs Simulated Sound
- Tools: Enable/Disable Parts of the model
- Tools: Parameter can be changed

Red highlighted items are new since July 2018

PARTIAL LOAD SIMULATION DETAILS

Definition for Partial Load Driving

- ❖ Partial load driving means any driving condition which provides positive acceleration greater than 0.3 m/s² between cruising and maximum load driving for a specific engine condition.
- Cruising is defined as low acceleration with a variation of +/- 0.3 m/s² around zero acceleration.
 - The acceleration 0.3 m/s² is derived from the allowable tolerance of +/- 1 km/h for the steady speed test according to UN R51.03 Annex 3 paragraph 3.1.2.1.6.

$$a_{crs} = ((50^{+1 \text{km/h}}/3.6)^2 - (50^{-1 \text{km/h}}/3.6)^2) / (2*(20 + I_{veh}^*)) = 0.30 \text{ m/s}^2$$

Maximum load driving is the maximum achievable acceleration for a specific engine operation condition.

Definition for Partial Load Driving

mid class passenger car

What Parameter to Chose for the Control of the Partial Load Area?

- The position of the throttle?
 - The throttle is a specific design of petrol engines, other technologies do not have a throttle.
 - The percentage of opening of the throttle is directly related to the achievable performance. The throttle diameter is tailored to maximum gas flow at rated engine speed.
 - This means a given percentage of opening of the throttle represents different loads at different engine speeds
- The percentage of depressing the accelerator pedal?
 - Vehicles have electronic accelerator pedals. The signal response is NOT linear to the engine. The response is mode dependent and integrates driving comfort, fuel economy and performance response.
- The achieved acceleration?
 - The achieved acceleration must be weighted against a reference value. However the reference is dependent on the operation condition of the engine and the gear/gear ratio engaged.

Acceleration Performance versus Engine Speed

Maximum achievable acceleration dependent on the engine speed

- ➤ The maximum achievable acceleration is dependent on the torque and power available at a discrete operation condition.
- ➤ This means the acceleration is dependent on the gear where the acceleration happens and the engine speed which is taken representative for the acceleration phase:

$$a_{\text{max,test}} = f(i_{\text{test}}, n_{\text{BB}})$$

➤ This behaviour is taken into consideration under the <u>Sound Transient Function</u>.

Simplified Approach

- The acceleration for a specific gear is assumed constant.
 - This means it is assumed that a vehicle would have always the same maximum acceleration in a given gear over the whole engine speed range.
 - The torque and power curve are considered under the Sound Tranient Function via the form factor.
- The partial load is simulated by using the acceleration performance relative to a reference acceleration in one specific gear.
 - For other gears or gear ratios, the reference acceleration is adjusted via the gear ratio.
 - Therefore it is necessary to determine once an reference acceleration, preferably in a low gear, such as 2nd gear.

Sound Transient Function: Link Between Load and Sound

The Sound Dynamic ΔL_{DYN} is the acoustic dynamic between no load and full load.

For the simulation, a hyperbolic function was chosen to adjust for engine speed dependent maximum acceleration and for the typical nonlinear transient between no load and maximum load.

Formula:
$$\Delta \mathbf{L}_{\mathsf{DYN},\mathsf{PL}} = \Delta \mathbf{L}_{\mathsf{DYN}} \left((1 - \alpha/(\mathsf{LOAD} + \alpha)) / (1 - \alpha) \right) / \omega$$
 Calibration Part ω
$$\omega = 1/(1 - \alpha) - \alpha/(1 - \alpha^2)$$

The shape of this curve can be adjusted by the **form factor** α in a wide range for best fitting

Adjustable Partial Load Transient via the Form Factor α

$$\alpha = 0,005$$

$$\alpha = 0,111$$

$$\alpha$$
 = 1,000

Determination of the Load for a Discrete Test

PERFORMANCE MODELLING MERGED WITH THE SOUND MODEL

<u>Integration of v x a – Concept for the Sound Model</u>

- The actual sound model simulates the general sound sources tyre/road, power train mechanics and dynamics based on type approval test results.
 - This model is based on engine speed and vehicle speed and does not consider performance aspects of a vehicle.
 - However, behind a tested operation condition the acceleration can be very different and thus as well the sound emission of vehicles.
- In 2018 a separate assessment model for performance was developed.
 - This models helps to differentiate between normal and extreme driving conditions.
 - However, this model cannot adequately assess partial load and cruising, as acceleration close to zero will lead to very low although the vehicle speed and thus the tyre/rolling sound could be very high.

<u>Actual Sound Model – Based on IWG ASEP Presentation Tokyo 2017</u>

Example 1 (normal vehicle)

Example 2 (high performance vehicle)

Performance Model - Based on IWG ASEP Presentation Brussel 2018

Example 1 (normal vehicle)

Example 2 (high performance vehicle)

Real Driving Performance (OICA Presentation February 2017)

- For driving within the typical onroad driving, performance cannot be added, as UN R51.03 Annex 3 is considered to be almost design neutral.
- ➤ ASEP Annex 7 and especially the revision 2.0 goes beyong that neutral area.

Integration of v x a - Modelling Approach (1)

- For the modelling the performance is calculated by using the vehicle speed v_{BB}, and the acceleration a_{test}.
- The performance is calculated by:

$$va_{test} = v_{BB'} / 3.6 * a_{test}$$

For normal onroad driving in urban areas the reference performance is determined by:

$$va_{ref} = v_{BB',Annex3} / 3.6 * a_{max,Annex 3}$$
 with $v_{BB',Annex 3} = 50$ km/h
$$a_{max,Annex 3} = 2.0$$
 m/s²

• The reference performance is $va_{ref} = 27.8 \text{ m}^2/\text{s}^3$

Integration of v x a – Modelling Approach (2)

- For performances lower than the reference acceleration, there will be no effect to the actual model.
- For performances greater than the reference acceleration, additional sound quotation is applied:

$$\Delta L_{\text{DYN(va)}} = \beta * \log(va_{\text{test}} / va_{\text{ref}})^2$$
 with β as adjustable factor

- \bullet For the actual model, the factor β was set to 8.
- The total dynamic of the vehicle is the set to:

$$\Delta L_{DYN(tot)} = \Delta L_{DYN} + \Delta L_{DYN(va)}$$

 \bullet The total dynamic $\Delta L_{DYN(tot)}$ is subject to the partial load model.

The Effect of the v x a in the Sound Model

The Add On is only applied, when the vehicle truly provides this performance.

For "typical on-road driving" nothing is added for performance.

		Vehicle Speed km/h									
		10	20	30	40	50	60	70	80	90	100
Acceleration m/s ²	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	0,5	1,4	2,8	4,2	5,6	6,9	8,3	9,7	11,1	12,5	13,9
	1,0	2,8	5,6	8,3	11,1	13,9	16,7	19,4	22,2	25,0	27,8
	1,5	4,2	8,3	12,5	16,7	20,8	25,0	29,2	33,3	37,5	41,7
	2,0	5,6	11,1	16,7	22,2	27,8	33,3	38,9	44,4	50,0	55,6
	2,5	6,9	13,9	20,8	27,8	34,7	41,7	48,6	55,6	62,5	69,4
	3,0	8,3	16,7	25,0	33,3	41,7	50,0	58,3	66,7	75,0	83,3
	3,5	9,7	19,4	29,2	38,9	48,6	58,3	68,1	77,8	87,5	97,2
	4,0	11,1	22,2	33,3	44,4	55,6	66,7	77,8	88,9	100,0	111,1
	4,5	12,5	25,0	37,5	50,0	62,5	75,0	87,5	100,0	112,5	125,0
	5,0	13,9	27,8	41,7	55,6	69,4	83,3	97,2	111,1	125,0	138,9

For a performance of 100 m²/s³ at 80 km/h an acceleration of 4,5 m/s² is needed.