The European Commission's science and knowledge service

32

3

Joint Research Centre

de.

EU-Commission JRC Contribution to EVE IWG

M. De Gennaro, E. Paffumi

26th Meeting of the GRPE Informal Working Group on Electric Vehicles and the Environment (EVE)

March 27-28th 2018, Tokyo (Japan)

Presentation Summary (1/2)

Follow-up of the JRC activities for contribution to the EVE IWG under the "in-vehicle battery ageing" topic

Summary after Geneva (Jan. 2018), i.e. what's old:

- Finalisation of the durability scenario analysis;
- In-vehicle cross-validation of the model's results against experimental data from Canada;

Presentation Summary (2/2)

Follow-up of the JRC activities for contribution to the EVE IWG under the "in-vehicle battery ageing" topic

Current Status (Mar. 2018), i.e. what's new:

- Scientific paper on battery durability submitted in Feb. 2018 to Applied Energy (to circulate as soon as it is accepted);
- Development of further scenarios for battery durability;

Performance based models (SotA)

	Capaci	ty fade			Power fade							
	Calendar	Cycle			Calendar	Cycle						
		Wang et Al. (2	011);									
LiFePO₄	Sarasketa-Zabala et Al. (2013/14);	Sarasketa-Zabala (2013);	et A	λ Ι.	Sarasketa-Zaba	Sarasketa-Zabala et Al. (2013);						
		Sarasketa-Zabala (2015);	et A	¥I.								
NCM + spinel Mn	Wang et A	Al. (2014);			-	-						
NCM – LMO	_	Cordoba-Arenas (2014);	et A	¥I.	-	Cordoba-Arenas Al. (2015);	et					

Calendar + Cycle (4 Combinations):

- #1 (LiFePO₄): Sarasketa-Zabala et Al. (2013/14) model for calendar plus Wang et Al. (2011) model for cycle;
- #2 (LiFePO₄): Sarasketa-Zabala et Al. (2013/14) model for calendar plus Sarasketa-Zabala et Al. (2015) model for cycle;
- #3 (NCM + Spinel Mn): Wang et Al. (2014) for calendar plus Wang et Al. (2014) for cycle;
- #4 (NCM-LMO): Wang et Al. (2014) for calendar plus Cordoba-Arenas et Al. (2015) for cycle;

Implementation of the Performance based models into TEMA (assumptions, 1/2)

Vehicle Electric Architecture (examples)

TEMA Structure		PHEV	BEV 1	
Pre-Processor Module 0				
Module 1 Statistical Mobility Module 2				
Hybrid/Electric Vehicles and Recharge Behavioral Models		Vehicle Battery Size Type [Wh]	Battery Shape [#	lo. of Cells Refer #] and Type Volta
Vehicles usability	T-Shaped	PHEV 16,000	T-shaped 1	92 – pouch 36
analysis and UF Cycle Ageing	Parallelepiped	BEV 1 24,000	Parallelepiped 1	92 – pouch 30
Module 3 Vehicles energy demand analysis	Flat-shaped	BEV 2 85,000	Flat	6,912 - 34 cylindrical 34
Module 4 Infrastructure Design and V2G	Itertace	Usable Energy at BoL [Wh]	Usable Energy at EoL [Wh]	Reserve [% o battery capacity]
Module 5	T-shaped (PHEV)	12,000	9,600	25%
Driving, Evaporative and	Parallelepiped (BEV	1) 18,000	14,400	15%
	Flat-shaped (BEV 2	.) 63,750	51,000	15%

26th Meeting of the GRPE EVE IWG March-27-28th, 2018, Tokyo, (Japan)

Electric

Architecture

2P-96S

48S-2P-2S

16S-72P-6S

Energy consumption

[Wh/km]

205

210

265

BEV 2

Reference Voltage [V]

365

360

345

Implementation of the Performance based models into TEMA (assumptions, 2/2)

The models have been implemented by adopting the following assumptions:

- the calendar and cycle capacity fades are calculated at cell level (uniform ageing assumption);
- the model assumes average quantities in the reference period per each vehicle for DOD, C-rate, Ah-throughput and temperature;
- DOD and temperature are assumed equal to the battery values, consistently with the uniform fade assumption, whilst the C-rate and Ah-throughput are scaled from the battery level down to the cell;
- the battery temperature is regulated by the BMS between 22 °C and 27 °C during the driving and recharging phases (cycle capacity fade modelling), whilst it assumes the ambient temperature in the parking phase (calendar capacity fade modelling);
- The model capacity fade is calculated at the net of the capacity fade reserve. i.e.:

- 5 recharge strategies adopted:
 - \checkmark Str. 1 = Long Stop Random AC;
 - \checkmark Str. 2 = Short-Stop Random DC;
 - \checkmark Str. 3 = Night AC Str. 4 = Smart AC;
 - \checkmark Str. 5 = Long-Stop AC 3-phases;

Results (Durability and EoL – tabulated)

Years of Life

Mileage @ EoL

					0 - km/n	500 nonth	500 – km/n	- 1,000 nonth	1,000 km/n	-1,500 10nth	1,500 - km/n	– 2,000 nonth	2,0 km/n	00+ nonth					0 - 500 km/month	500 – 1,000 km/month	1,500 – 2,000 km/month	2,000+ km/month		
					Years to	Years to 100.000	Years to	Years to 100.000	Years to	Years to 100.000	Years to	Years to 100.000	Years to	Years to 100.000				#1	LiFePO ₄	56,947	83,657	-	-	-
					EoL	km	EoL	km	EoL	km	EoL	km	EoL	km	-	PHEV-1		#2	LiFePO ₄	\leq 50,000	\leq 50,000	-	-	-
			#1	LiFePO ₄	≥ 20		11.9			-		-		-	#			#3	NCM-Mn	\leq 50,000	63,270	-	-	-
1	PHEV-1		#2	LiFePO ₄	17.0	> 20	6.1	14.2				-		-	50	60		#4	NCM-LMO	\leq 50,000	102,638	-	-	-
#	5.8% fleet share		#3	NCM-Mn	14.2	≥ 20	9.0	14.2		-		-		-	ate		00	#1	LiFePO ₄	\leq 50,000	51,592	59,638	-	-
eg.		lel	#4	NCM-LMO	16.5		14.6			-		-		-	L L	BEV-1	BEV-1 Z		LiFePO ₄	\le 50,000	\leq 50,000	\leq 50,000	-	-
.ato		Ioc	#1	LiFePO ₄	13.5		6.6		4.7			-	· ·	-	e S	12.1% fleet share	ng	#3	NCM-Mn	\leq 50,000	\leq 50,000	58,369	-	-
Stı	BEV-1	<u>م</u>	#2	LiFePO ₄	9.6	≥ 20	4.0	12.8	≤ 3.0	7.9		-		-	50		ei.	#4	NCM-LMO	\leq 50,000	67,226	104,050	-	-
ge	12.1% fleet share	ein	#3	NCM-Mn	8.5		5.8		4.0			-		-	ha		Ā	#1	LiFePO ₄	157,504	≥300,000	≥300,000	≥300,000	≥300,000
ıar		Ag	#4	LiEePO	> 20		> 20		> 20		> 20	-	> 20	-	fec	BEV-2		#2	LiFePO ₄	176,336	≥300,000	≥300,000	≥300,000	≥300,000
ecl	DEV 2	Ì	#2	LiFePO4	≥ 20 ≥ 20		≥ 20 > 20		≥ 20 ≥ 20		≥ 20 15.0		$\geq 20 > 20$		P	53.6% fleet share		#3	NCM-Mn	$\leq 50,000$	120,037	205,502	297,360	≥300,000
К	53.6% fleet share		#3	NCM-Mn	12.6	≥ 20	13.4	11.2	14.2	6.9		5.0	16.0	3.9				#4	NCM-LMO	\leq 50,000	113,767	196,819	291,413	≥300,000
			#4	NCM-LMO	12.1		12.7		13.6		14.7		16.1					#1	LiFePO ₄	≤ 50,000	54,771	63,396	69,139	74,819
			#1	LiFePO ₄	13.0	_	6.4		4.5		3.5		≤ 3.0		2	BEV-1	TV_1 5		LiFePO ₄	≤ 50,000	$\leq 50,000$	≤ 50,000	$\leq 50,000$	$\leq 50,000$
#2	BEV-1	lel	#2	LiFePO ₄	9.1	> 20	3.8	11.7	≤ 3.0	71	≤ 3.0	51	≤ 3.0	37	#	24.8% fleet share	po	#3	NCM-Mn	< 50,000	< 50,000	54,943	61,237	69,475
r. +	24.8% fleet share	Ioc	#3	NCM-Mn	7.9	- 20	5.2	11.7	3.9	/.1	3.1	5.1	≤ 3.0	5.1	it.		Z	#4	NCM-LMO	< 50,000	67,608	100.025	130.376	165,670
St		60	#4	NCM-LMO	9.3		7.9		7.1		6.6		6.2				50	#1	LiFePO ₄	147.804	>300.000	>300.000	>300.000	>300.000
ch.		in	#1	LiFePO ₄	≥ 20		≥ 20		≥ 20		≥ 20		≥ 20		Ch	DEV 2	iei,	#2	LiFePO4	171.195	>300.000	>300.000	>300.000	>300.000
Re	BEV-2	¶ B B B B B B B B B B B B B B B B B B B	#2	LIFEPO ₄	≥ 20	≥ 20	≥ 20	11.0	≥ 20	6.8	≥ 20	4.8	≥ 20	3.4	ľ ř	79.8% fleet share	Ag	#3	NCM-Mn	< 50.000	107.766	174.392	239.644	>300.000
79.8	77.070 neet share		#4	NCM-LMO	11.6		11.9		11.8		11.0		11.5					#4	NCM-LMO	≤ 50,000	103,238	167,003	231,381	≥300,000

Legend

14	
	EoL below 5 years;
	EoL between 5 and 10 years;
	EoL above 10 years;

Summary of the logical passages

Experimental data from Canada (description)

	Test stage ID	Test-Type	Start Date	End Date	Recharge Level 2 [#]	Recharge Level 3 [#]	Average Recharging Power [kW]	Driven Distance [km]	Driving Time [h]	Recharging Time [h]	Resting Time [h]	
	#1.1	In-Lab	05/03/2015	26/04/2015	26	-	4.2	3,021	50.9	115.8	1,081.3	
#1	#1.2	On-Road	27/04/2015	30/08/2015	-	86	22.0	10,365	218.8	64.7	2,716.5	
icle	#1.3	In-Lab	31/08/2015	14/09/2015	8	-	4.5	1,128	19.0	38.2	278.7	
ehi et. (#1.4	On-Road	15/09/2015	07/04/2016	-	240	14.9	18,683	397.5	214.9	4,307.6	
st v nufi	#1.5	In-Lab	08/04/2016	24/04/2016	17	-	3.9	1,339	22.9	50.9	310.3	
Tes ma	#1.6	On-Road	25/04/2016	24/10/2016	-	157	20.8	13,858	301.9	88.7	3,977.4	
	#1.7	In-Lab	25/10/2016	04/11/2016	5	-	4.4	1,184	20.9	41.0	178.1	
				Total (logged)	483	-	-	49,578	1,031.8	614.2	12,849.9	
			Run-	In (non-logged)	-	-	-	1,663	-	-	4,384.8	
	#2.1	In-Lab	27/03/2015	10/05/2015	16	-	4.1	1,764	30.0	70.2	955.7	
# 10	#2.2	On-Road	11/05/2015	14/09/2015	118	-	4.3	10,971	224.2	333.2	2,466.6	
icle	#2.3	In-Lab	15/09/2015	01/10/2015	11	-	4.1	1,298	22.7	50.3	311.0	
eh act.	#2.4	On-Road	02/10/2015	08/05/2016	241	-	4.5	18,716	364.8	700.3	4,190.9	
st v	#2.5	In-Lab	09/05/2016	29/05/2016	10	-	4.1	1,311	22.8	46.1	411.1	
(II G	#2.6	On-Road	30/05/2016	08/11/2016	143	-	4.2	12,770	271.2	385.7	3,231.0	
	#2.7	In-Lab	09/11/2016	23/11/2016	14	-	4.2	1,334	22.5	46.7	266.7	
				Total (logged)	553	-	-	48,164	958.2	1,632.7	11,833.1	
			Run-	In (non-logged)	-	-	-	2,214	-	-	3,384.9	
		-	60									

	Test stage ID	Test-Type	Aver. weighted battery temperature [K]	Average air temperature [K]	Average weighted C-rate	Battery Ah-throughput [Ah]	SoC _{min} [%]	UBE degradation since stage x.1 [%]	Odometer reading [km]	Age of the car since manufacture [yrs]
	#1.1	In-Lab	288.9	284.9	0.31	2,672.8	7.7	0.0%		
014)	#1.2	On-Road	300.8	291.0	0.44	8,655.9	42.5			
icle	#1.3	In-Lab	304.1	300.4	0.32	987.6	4.6	-3.4%	16,177	1.04
ehj act. (#1.4	On-Road	287.7	274.9	0.43	18,630.8	41.6			
st v nufa	#1.5	In-Lab	298.0	297.2	0.29	1,127.7	12.0	-6.5%	36,199	1.65
Teg (ma	#1.6	On-Road	297.8	290.2	0.48	11,317.4	39.7			
	#1.7	In-Lab	303.0	297.6	0.31	1,018.0	10.2	-10.0%	51,241	2.18
	#2.1	In-Lab	286.8	283.8	0.33	1,626.2	7.5	0.0%		
(1 4)	#2.2	On-Road	299.5	292.6	0.22	8,970.5	37.6			
icle	#2.3	In-Lab	296.4	291.9	0.33	1,200.3	4.9	-3.4%	16,247	0.92
ehi act.	#2.4	On-Road	282.3	277.3	0.25	18,391.2	36.2			
st v nufa	#2.5	In-Lab	301.1	296.7	0.32	1,117.4	8.7	-5.3%	36,247	1.58
Te: ma	#2.6	On-Road	295.9	286.4	0.22	10,433.5	41.1			
	#2.7	In-Lab	302.2	298.9	0.32	1,143.1	7.3	-6.8%	50,378	2.06

Source: Presentation from Transport Canada @ EVE-22 (Ann-Arbor, April 2017)

Experimental data from Canada (Validation)

In-vehicle validation of the models (assumptions):

- Uniform T, DoD, C-rate and Ah-throughput;
- T, DoD @ battery level;
- C-rate and Ah-throughput @ cell level;
- Q_{loss-total} = Q_{loss-cal.} + Q_{loss-cycle} Reserve(10%);
 NCM-LMO model (closer to real LEAF chemistry i.e. LiMn₂O₄ with LiNiO₂)

The results will be described in the scientific paper:

"Capacity fade of Lithium-ion automotive batteries under real-world use conditions", Submitted in Feb. 2018.

Further Scenarios explored

New scenarios include:

- Additional database included in the analysis on 61 pilot scenarios \rightarrow deviation < 3.2%
- 2 additional vehicles (i.e. A-segment vehicle + D-segment SUV):
 - Focus on NCM-LMO chemistry;
 - 5 recharge strategies per 5 user bins (as above);
 - Estimation of the Years needed to reach 90% 80% 70% 60% 50% capacity fade;

Further Scenarios explored

Modena Database Li-Ion NCM-LMO (2015) Years Driving to Set Threshold		2021	0-50	00 km/ma	onth	500-1000 km/month					1000-1500 km/month					1500-2000 km/month					> 2000 km/month					
		90%	80%	/0%	60%	50%	90%	80%	/0%	60%	50%	90%	80%	70%	60%	50%	90%	80%	/0%	60%	50%	90%	80%	/0%	60%	50%
	A-segment	4.6	9.0	14.9	20-25	>25	3.8	7.4	12.3	18.5	>25			n.a.					n.a.					n.a.		
Long Stop Random AC	BEV-1	4.9	9.7	16	20-25	>25	4.4	8.6	14.3	20-25	>25	4.2	8.2	13.7	20-25	>25			n.a.					n.a.		
	Vehicle-Type BEV-2	6.2	12.1	20	>25	>25	6.5	12.7	20-25	>25	>25	6.9	13.6	20-25	>25	>25	7.5	14.7	20-25	>25	>25	8.2	16.1	>25	>25	>25
	D-segment(SUV)	6.2	12.1	20	>25	>25	6.5	12.9	20-25	>25	>25	7.1	13.9	20-25	>25	>25	7.7	15.0	20-25	>25	>25	8.6	16.8	>25	>25	>25
	PHEV-1	3.2	7.3	13	20-25	>25	2.8	6.4	11.5	18	>25			n.a.					n.a.					n.a.		
	A-segment	4.4	8.6	14.2	20-25	>25	3.5	6.8	11.4	17.1	20-25	3	6.0	10.0	14.9	20-25	2.7	5.3	8.9	13.4	18.8			n.a,		
Short Stop Random DC	BEV-1	4.7	9.3	15.4	20-25	>25	4	7.9	13.1	19.6	>25	3.6	7.1	11.8	17.8	20-25	3.4	6.6	11.0	16.6	20-25	3.1	6.2	10.2	15.4	20-25
	Vehicle-Type BEV-2	5.9	11.6	19.2	>25	>25	5.8	11.4	18.8	>25	>25	5.7	11.3	18.6	>25	>25	5.7	11.2	18.6	>25	>25	5.7	11.2	18.5	>25	>25
	D-segment(SUV)	5.9	11.6	19.1	>25	>25	5.8	11.3	18.7	>25	>25	5.7	11.2	18.5	>25	>25	5.7	11.1	18.4	>25	>25	5.7	11.1	18.4	>25	>25
	PHEV-1			n.a.			n.a.					n.a.					n.a.					n.a.				
	A-segment	4.5	8.8	14.5	20-25	>25	3.7	7.3	12.1	18.2	>25	3.4	6.7	11.2	16.8	20-25			n.a.					n.a.		
	BEV-1	4.9	9.6	15.8	20-25	>25	4.3	8.5	14.2	20-25	>25	4.1	8.2	13.6	20-25	>25	4.1	8.0	13.3	20.0	>25			n.a.		
Night AC	Vehicle-Type BEV-2	6.2	12.1	20.0	>25	>25	6.5	12.7	20-25	>25	>25	7.0	13.7	20-25	>25	>25	7.5	14.8	20-25	>25	>25	8.1	16.0	>25	>25	>25
	D-segment(SUV)	6.2	12.1	20.0	>25	>25	6.6	12.9	20-25	>25	>25	7.1	13.9	20-25	>25	>25	7.7	15.2	>25	>25	>25	8.3	16.2	>25	>25	>25
	PHEV-1	3.2	7.1	12.7	19.9	>25	2.8	6.3	11.3	17.8	>25	2.7	6.0	10.8	17.0	20-25			n.a.					n.a.		
	A-segment	4.5	8.8	14.6	20-25	>25	3.7	7.3	12.2	18.3	>25	3.4	6.7	11.1	16.7	20-25			n.a.					n.a.		
	BEV-1	4.9	9.6	15.9	20-25	>25	4.3	8.6	14.2	20-25	>25	4.2	8.2	13.6	20-25	>25			n.a.					n.a.		
Smart AC	Vehicle-Type BEV-2	6.1	12.1	19.9	>25	>25	6.5	12.7	20-25	>25	>25	6.7	13.1	20-25	>25	>25			n.a.					n.a.		
	D-segment(SUV)	6.2	12.1	20.0	>25	>25	6.5	12.8	20-25	>25	>25	6.7	13.1	20-25	>25	>25			n.a.					n.a.		
	PHEV-1	3.2	7.2	12.8	20	>25	2.8	6.4	11.4	17.9	>25			n.a.					n.a.					n.a.		
	A-segment	4.3	8.5	14.1	20-25	>25	3.4	6.8	11.3	17.0	20-25	3	6.0	10.0	15.0	20-25	2.8	5.4	9.1	13.6	20-25	2.5	5.0	8.4	12.6	17.7
	BEV-1	4.7	9.3	15.4	20-25	>25	4	7.9	13.2	19.7	>25	3.7	7.2	12.0	18.0	>25	3.4	6.8	11.2	16.9	20-25	3.2	6.3	10.5	15.7	20-25
Long Stop AC 3-phases	Vehicle-Type BEV-2	6.0	11.7	19.3	>25	>25	5.9	11.6	19.2	>25	>25	5.9	11.6	19.3	>25	>25	6.0	11.7	19.4	>25	>25	6.1	12.0	19.9	>25	>25
	D-segment(SUV)	5.9	11.7	19.3	>25	>25	5.9	11.6	19.2	>25	>25	5.9	11.6	19.2	>25	>25	6.0	11.7	19.4	>25	>25	6.1	12.0	19.9	>25	>25
	PHEV-1	3.1	6.9	12.3	19.3	>25	2.6	5.9	10.5	16.5	20-25	2.4	5.4	9.6	15.0	20-25	2.2	5.0	8.9	14.0	20-25	2.1	4.7	8.5	13.3	19.3

Legend

EoL below 5 years; EoL between 5 and 10 years; EoL above 10 years;

18A

Thank you for the attention

Contacts Info: EC DG JRC DIR-C ETC Sustainable Transport Unit michele.degennaro@ec.europa.eu elena.paffumi@ec.europa.eu

