Proposed test method to establish hydrogen compatibility of materials for fuel cell vehicles

GTR no. 13 Phase 2 IWG

February 5-7, 2018

Torrance, CA

Prepared by: Chris San Marchi, Sandia National Laboratories In collaboration with SAE Fuel Cell Safety Task Force

SAND2018-0857 PE

Motivation: establish materials compatibility for high-pressure hydrogen service in context of hydrogen fuel cell electric vehicles

Goals of presentation:

- Briefly summarize activity within SAE Fuel Cell Safety Task Force
 - SAE H2 Compatibility Expert Team
 - Collaborative testing and test criteria development
- Present test criteria developed for SAE J2579
 - Brief justification of requirements for materials compatibility

SAE Fuel Cell Safety Task Force

- Meets quarterly with broad representation from automotive OEMs
- Tasked with developing several standards for fuel cell vehicles in context of safety
 - J2579 Standard for Fuel Systems in Fuel Cell and Other Hydrogen Vehicles
 - Includes requirements for materials in contact with high-pressure gaseous hydrogen
 - SAE H2 Compatibility Expert Team
 - Formed to develop requirements for hydrogen compatibility of materials
 - Includes hydrogen compatibility experts identified by Task Force representation

SAE H2 Compatibility Expert Team

- Representation from nationally funded research programs funded to enable deployment of fuel technologies
 - Germany: MPA Stuttgart
 - Japan: Kyushu University and AIST
 - US: Sandia National Laboratories
- Collective learning through so-called "round robin" testing campaign
 - Development of capabilities and examination of procedures to execute fatigue tests in high-pressure hydrogen at low temperature
 - Demonstrate test methodologies at MPA, KU and SNL

Collective learning activity ("round robin")

Test	Test conditions	Environment	Number of tests
Slow strain rate tension (SSRT)	≤ 5 x10 ⁻⁵ s ⁻¹	Control -40°C	3
	≥ 5 X10°S'	90 MPa H2 -40°C	3
Notched	Sa = 200 MPa	Control -40°C	3
tension-tension fatigue	R = 0.1 1 Hz	90 MPa H2 -40°C	3
Smooth Sa tension-compression fatigue	Sa = 320 MPa R = -1	Control -40°C	3
	1 Hz	90 MPa H2 -40°C	3

Test criteria for hydrogen compatibility of materials

SAE J2579, Appendix B.3 is essentially a set of generic test criteria for evaluation of structural metals for service in high-pressure gaseous hydrogen

- Part 1: Definition of materials and environment al test conditions
- Part 2: SSRT
- Part 3: Fatigue life test
- Part 4: Welds

In general, CSA CHMC1 is referenced for the test methods (CHMC1 references ASTM standards)

Part 1: Definition of materials and environmental test conditions

- Material must be defined by and satisfy requirements for
 - Composition
 - Tensile properties: specified minimum Sy, Su, El
- Environmental test conditions
 - Pressure ≥ 1.25 NWP (nominal working pressure)
 - Test temperature: 228 K (for most materials)
 - Measured gas purity according to CSA CHMC1
 - 2 ppm O₂, 10 ppm H₂O

Part 1: Definition of materials and environmental test conditions: test temperature

Table B.3.1.4 from SAE J2579

Alloy type	Test method	Test temperature (K)		
Austenitic stainless steel	SSRT	228 ±5		
	Fatigue life	228 ±5 and 293 ±5		
Nickel-based alloys	SSRT and Fatigue life	228 ±5		
Aluminum, magnesium and copper alloys	SSRT and Fatigue life	293 ±5		
Other alloys	SSRT and Fatigue life	228 ±5 and 293 ±5		

Part 2: Slow strain rate tension test

- Basic tensile test at slow strain rate in the defined hydrogen environment
- Minimum of three (3) tests
- Average property values must be greater than the specified minimum Sy and Su values respectively
- Average elongation (EI) > 12%
- Additionally, Su/Sy > 1.07

Part 3: Fatigue life test

- Force-controlled (axially loaded cylindrical) fatigue test in the defined hydrogen environment
 - Frequency of 1 Hz
 - Maximum stress shall be 1/3 of measured Su (air)
- Minimum of three (3) tests
- Two test configuration options
 - Option 1: smooth test specimen with R = -1, or
 - Option 2: notched test specimen with R = 0.1
- Cycles to failure >200,000 cycles for each test
 - Alternatively, cycles to failure >100,000 cycles for each of 5 notched test specimens

Part 3: Fatigue life test: stress cycle

1/4

нн і

smooth

tension

Part 4: Welds

- Prepare representative welded structures
- Same testing requirements as for non-welded materials
 - Specified minimum tensile properties must be defined
 - Weld material must satisfy the minimum specified properties
 - Average values from SSRT tests of weld-material must satisfy minimum specified strength properties, El > 12% and Su/Sy > 1.07
 - Fatigue life must be >200,000 cycles for each of three (3) smooth or notched fatigue tests; or >100,000 cycles for each of (5) notched fatigue tests

Summary of requirements for compatibility

Test configuration		Evaluation parameter	Requirements of tests performed in H2		
Slow strain rate tension tests – SSRT (3 tests)		Yield strength	Average ≥ Sy		
		Tensile strength	Average ≥ Su		
		Strain hardening capacity	Average > 1.07		
		Elongation	Average ≥ 12%		
Fatigue life tests (must satisfy 1 of 3 options)	Option 1 (3 tests): Smooth, R= -1	Cycles to failure	Each > 200,000 cycles		
	Option 2 (3 tests): Notched, R = 0.1	Cycles to failure	Each > 200,000 cycles		
	Option 3 (5 tests): Notched, R = 0.1	Cycles to failure	Each > 100,000 cycles		

Note: Sy and Su are specified minimum yield and tensile strength respectively

Tensile properties are degraded in gaseous hydrogen especially at low temperature

Requirement:

- Minimum specified strength properties are maintained
- Ductility is consistent with pressure applications

Rationale:

 Known and ductile tensile response

Data from: Fukuyama et al., *J Japan Inst Metals* 67 (2003) 456-459.

Tensile strength properties are not degraded in gaseous hydrogen for acceptable materials

Annealed austenitic stainless steel

- Common stress limitations for fatigue design: minimum of 2/3 Sy and 1/3 Su
- Yield and tensile strengths are typically not affected by hydrogen
- Maximum stress during fatigue testing (J2579) always greater than 1/3 Su

Fatigue life of smooth specimens is typically infinite at stress of 1/3 Su_{meas}

Requirement:

• Nf > 200,000 cycles at $S_{max} = 1/3 Su_{meas}$

Rationale:

 Ensure fatigue life at high stress is >> than design life

Data from: M. Nakamura et al., M&M2017 conference, 7-9 October 2017, Hokkaido, Japan

Notched specimens assess sensitivity to stress concentration for typical maximum stress (1/3Su)

Requirement:

• Nf > 100,000 cycles at $S_{max} = 1/3 Su_{meas}$

Rationale:

 Ensure fatigue life at high stress is >> than design life

Data from: C. San Marchi et al., 43rd MPA Seminar, 11-12 October 2017, Stuttgart, Germany

Diverse range of austenitic stainless steels have been evaluated, including high-strength alloys

material	Yield (MPa)	Tensile (MPa)	Cr	Ni	Mn	N	Typical allowable stress (MPa)
316L	280	562	17.5	12	1.2	0.04	115
CW 316L	573	731	17.5	12	1.2	0.04	218
304L	497	721	18.3	8.2	1.8	0.56	195
XM-11	539	881	20.4	6.2	9.6	0.26	207
Nitronic 60	880	1018	16.6	8.3	8.0	0.16	218
SCF-260	1083	1175	19.1	3.3	17.4	0.64	333

Wide range of strength

Wide range of Ni/Mn content

High-strength materials can be evaluated by method and enable higher stress designs

Strain-hardened austenitic stainless steel

- 1/3 Su of high-strength materials can be more then specified minimum yield strength of annealed material
- Implicitly, increase of design stress enables lower weight and lower cost designs without compromising performance
 - Justified by fatigue performance

Open questions

- Temperature for fatigue life testing
 - Most data suggest that austenitic stainless steels show longer fatigue life at low temperature
 - Change temperature of fatigue test to room temperature only?
- Welding
 - Additional requirements?
- Additional testing requirements for aluminum alloys
 - Stress corrosion cracking (SCC) threshold
 - Test method and evaluation criteria for SCC being formulated by High-Pressure Institute of Japan HPIS E 103:2018
 - Method seems equivalent to ISO 7539-6
 - Criteria should be incorporated in SAE J2579
- How to incorporate "new" materials into SAE J2579
 - Replace table B.2 and periodically update with tested materials?

Summary

- Materials compatibility test method in SAE J2579 provides performance-based metrics to evaluate materials for hydrogen service
 - J2579 Appendix B.3 requirements for materials do not purport to generate design data
 - Method consists for 4 parts
 - 1: Materials definition
 - 2: Slow strain rate tensile testing (3 tests)
 - 3: Fatigue life testing (3-5 tests)
 - 4: Evaluation of welds (if welded)
 - Tensile testing (SSRT) in H2 demonstrates that materials satisfy the specified minimum properties consistent with pressure application
 - Fatigue life testing in H2 demonstrates that materials have fatigue performance consistent with baseline materials

Backup slides

Fatigue life at low temperature appears to be greater than at room temperature R = 0.1, f = 1 Hz

800 800 Pressure Temperature 10 MPa: open 293K: open 103 MPa: closed 700 223K: closed 700 600 600 Maximum Stress (MPa) Maximum stress (MPa) 500 500 400 400 300 Temperature: 293K 300 Pressure: 10 MPa 316L (annealed) 316L (annealed) 200 316L (strain hardened) 200 316L (strain hardened) **XM-11 XM-11** Nitronic 60 Nitronic 60 100 SCF-260 100 SCF-260 304L 304L 10⁵ 10^2 10³ 10^{4} 10⁶ 10^{2} 10^{3} 10^{4} 10^{5} 10⁶ Cycles to Failure Cycles to Failure

- Pressure has modest effect, if any, on fatigue life
- Temperature has either no effect or increases fatigue life
- Nitronic 60 is an exception for both pressure and temperature