

Towards development of a tool to simulate hydrogen tank fuelling

M Dadashzadeh, S Kashkarov, D Makarov, V Molkov Hydrogen Safety Engineering and Research Centre

ulster.ac.uk

Developing fuelling modelling tool Benefits and applicability range

Benefits:

- Fast
- Inexpensive
- Tank independent

Applicability range based on J2601 (but not limited to):

- Temperature inside: -40 °C≤T_{gas} ≤85 °C
- Pressure: 0.5 MPa≤P_{gas}≤1.25×NWP
- SOC: not to exceed 100%
- Filling time: 3-5 min

Note: state of charge (SOC) = $\rho(P, T) / \rho(NWP, 15^{\circ}C)$

Fuelling J2601

Fuelling protocol for light duty gaseous hydrogen surface vehicles J2601:

- Two approaches:
 - Look-up table: utilising a fixed pressure ramp
 - Formula based: utilising a dynamic pressure ramp

Currently J2601 protocol is designed for:

- Delivery temperature categories: -40°C, -30°C, -20°C
- Pressure classes: 35 MPa and 70 MPa
- Compressed hydrogen storage: 49.7 L to 248.6 L

Future development (J2601):

- Warmer fuel delivery temperatures (-10^oC or ambient)
- Smaller compressed hydrogen storage sizes

The model Formulation

Formulation		
Filling model	Equation	Reference
Gas	Form of energy conservation equationReal gas EOS (Abel-Noble)	Molkov et al., 2009 Johnson, 2005
Tank	 Unsteady heat transfer equation Nu correlations for convective for inside heat transfer Constant heat transfer coefficient on external wall Original approach based on the entrainment theory 	Patankar, 1980 Woodfield, 2008 Ricou & Spalding, 1961
Input	 Tank properties: volume; internal surface, diameter and length; external diameter; load-bearing wall and liner thicknesses and their material thermal properties (thermal conductivity, specific heat capacity, density); external heat transfer coefficient; nozzle diameter; initial temperature Hydrogen properties: co-volume constant; specific heat capacity; thermal conductivity; specific gas constant; dynamic viscosity; initial pressure and temperature; pressure ramp Other inputs: ambient temperature; air viscosity; fuelling time 	
Output	 Gas temperature inside the tank Temperature profile within the tank wall and liner Gas density or SOC 	

Validation Type IV tank, 29 L

Test (Miguel et al., 2016):

- Initial pressure 2 MPa; target pressure 77 MPa
- 3 mm orifice

Tank properties (Acosta et al., 2014):

- Volume 29 L (external length 827 mm; external diameter 279 mm; internal diameter 230 mm)
- CFRP: thermal conductivity 0.74 W m⁻¹ K⁻¹; specific heat capacity 1120 J kg⁻¹ K⁻¹; density 1494 kg m⁻³
- HDPE liner: thermal conductivity 0.385 W m⁻¹ K⁻¹; specific heat capacity 1580 J kg⁻¹ K⁻¹; density 945 kg m⁻³

Validation results Type IV tank, 29 L

Ulster

Maximum experimental temperature difference in the tank is 3°C Jniversitv (Cebolla et al., 2014). The model gives maximum deviation 5° C.

Validation Type III tank, 40 L

Test (Miguel et al., 2016):

- Initial pressure 2 MPa; target pressure 77 MPa
- 3 mm orifice

Tank properties (Acosta et al., 2014):

- Volume 40 L (external length 920 mm; external diameter 329 mm; internal diameter 290 mm)
- CFRP: thermal conductivity 0.74 W m⁻¹ K⁻¹; specific heat capacity 1120 J kg⁻¹ K⁻¹; density 1494 kg m⁻³
- Aluminium liner: thermal conductivity 167 W m⁻¹ K⁻¹; specific heat capacity 900 J kg⁻¹ K⁻¹; density 2700 kg m⁻³

Validation result Type III tank, 40 L

Ulster University

Maximum experimental temperature difference in the tank is 3° C (Cebolla et al., 2014). The model gives maximum deviation 5° C.

Validation Type III tank, 74 L

Test (Zheng et al., 2013):

- Initial pressure 5.5 MPa; target pressure 70 MPa
- 5 mm orifice

Tank material properties (Zheng et al., 2013)

- Volume 74 L (external length 1030 mm; external diameter 427 mm; internal diameter 354 mm)
- CFRP: thermal conductivity 0.612 W m⁻¹ K⁻¹; specific heat capacity 840 J kg⁻¹ K⁻¹; density 1570 kg m⁻³
- Aluminium liner: thermal conductivity 238 W m⁻¹ K⁻¹; specific heat capacity 902 J kg⁻¹ K⁻¹; density 2700 kg m⁻³

Validation result Type III tank, 74 L

Ulster University

Maximum experimental temperature difference in the tank is 5°C (Zheng et al., 2013). The model gives the same maximum deviation 5°C.

Model application: Type IV tank, 50 L Ambient temperature T_{amb} = -20^oC

End of fuelling is at SOC 100%.

No pipe with heat losses in simulations (assuming double wall vacuumed hose)

Model application: Type IV tank, 50 L Ambient temperature T_{amb} = 15^oC

End of fuelling is at SOC 100%

Model application: Type IV tank, 50 L Ambient temperature T_{amb} = 50°C

End of fuelling is at SOC 100%.

J2601: fuelling at T_{amb} =50 C with T_{del} =-40 C from 2 to 77.8 MPa takes with ramp 3.2 MPa/min (77.8-2)/3.2=24 min?! Fuelling with "adiabatic" hose gives only 2 min 45 s!

Model application: Type IV tank, 50 L Effect of pressure ramp: T_{amb} 50°C; T_{del} -10°C

End of fuelling is at SOC 100%

Concluding remarks

- The model for simulating hydrogen tank fuelling is formulated and validated against tests with Type III and Type IV tank fuelling.
- The model predictions are "instantaneous" with predictive accuracy within $\pm 5^{\circ}C$.
- The model could be used to design efficient fuelling protocols and fuelling control systems.
- The "adiabatic" hose fuelling efficiency should be further tested experimentally.

