

U.S. DOE Hydrogen & Fuel Cells Program Overview

Laura Hill, Project Manager – Fuel Cell Technologies Office

2nd Meeting - Global Technical Regulation 13 - Phase II

February 2018

DOE Hydrogen and Fuel Cells Program

Early R&D Focus

Applied research, development and innovation in emerging hydrogen and fuel cell technologies leading to:

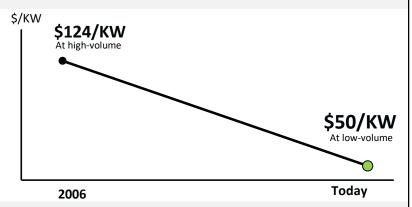
- Energy security
- Energy resiliency
- Strong domestic economy

Early R&D Areas

Fuel Cells

Hydrogen

- PGM- free catalysts
- Durable MEAs
- Electrode performance


- Production pathways
- Delivery components
- Advanced materials for storage

PGM = Platinum group metals

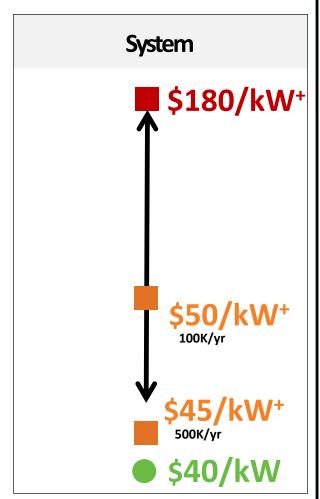
MEA = Membrane Electrode Assembly

Early R&D Impact

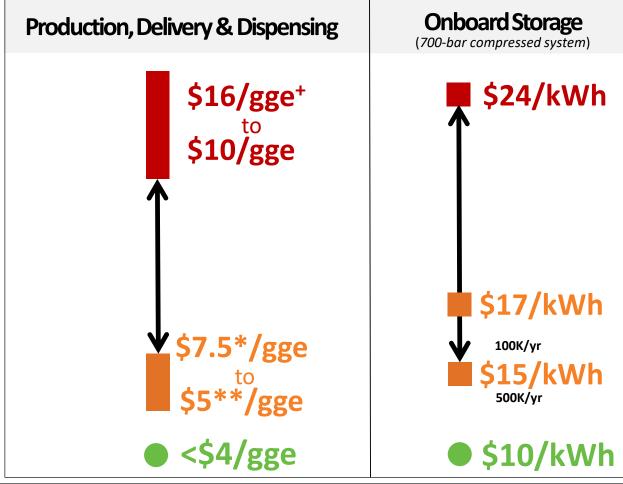
60% Lower Fuel Cell Cost

Greater Fuel Cell Durability

4X more hours of fuel cell lifetime since 2006



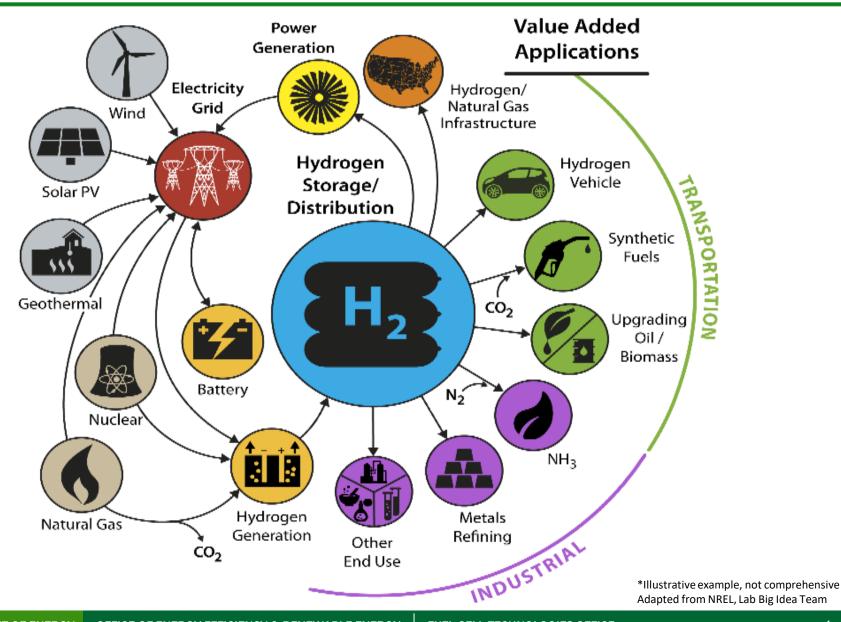
80% Lower Electrolyzer Cost


for H₂ production since 2002

DOE Cost Status and Targets

Fuel Cell R&D

Hydrogen R&D

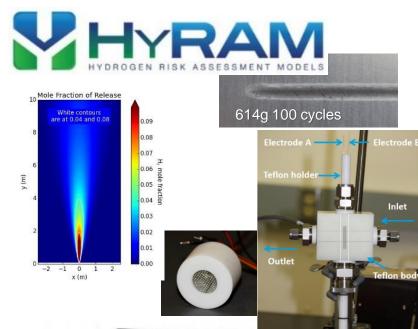

High-Volume Projection

Note: Graphs not drawn to scale and are for illustration purposes only.

^{*}Based on Electrolysis **Based on NG SMR † Preliminary, updates underway Onboard storage cost status from DOE Program Record 15013

H2@Scale Energy System

Safety, Codes & Standards Goals & Objectives


Funding R&D needed to develop science-based codes and standards, thereby enabling the safe deployment of H_2 and fuel cell technologies

Codes & Standards

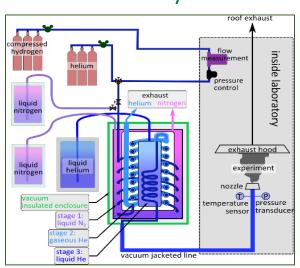
- Conduct R&D to provide critical data and information needed to define requirements in developing codes and standards.
- Support and facilitate development of essential codes and standards to enable widespread deployment of hydrogen and fuel cell technologies and completion of essential regulations, codes and standards (RCS).

Safety

- Ensure that best safety practices underlie activities supported through DOE-funded projects.
- Enable widespread sharing of safety-related information resources and lessons learned with key stakeholders.

Current Strategy and Barriers

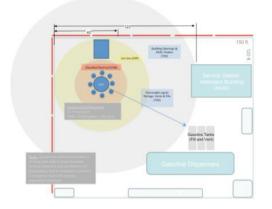
Focus areas	Barriers*	Objectives
Hydrogen Behavior	Insufficient data for code revision (e.glarge station footprints)	R&D model development and verification to establish scientific basis for codes and standards revisions.
Risk Assessment	Usage and access restrictions; Limited reliability data	Develop tools on a scientific foundation which can be used for various hydrogen applications.
Materials Compatibility	Lack of information on new materials compatibility with H ₂	Establish a foundational materials understanding, which will enable and support the C&S development.
Detection & Sensors	High cost and limited commercial availability of products	Develop H_2 contaminant detectors for fuel quality at H_2 station.
Outreach & Support	Limited access and understanding of safety data and information	Support critical stakeholders in understanding hydrogen safety best practices.

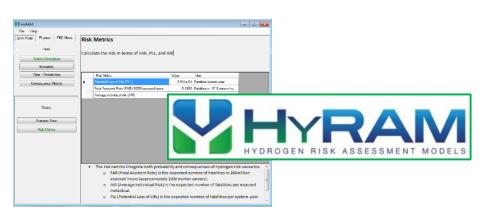

From Safety, Codes and Standards MYRD&D (June 2015)

Hydrogen Behavior & Modeling

Leveraging science to enable infrastructure through understanding hydrogen behavior, analyzing risk, and implementing inherently safe design options

R&D to inform codes & standards development for both gaseous and liquid hydrogen.


- **NFPA-2:** Draft revised setback distances for **bulk gaseous hydrogen storage** systems with reductions that would have a significant impact on the number of potential sites for hydrogen fueling, focusing on three parameters:
 - 1. Maximum release area: currently, this value is 3%
 - 2. Heat flux harm criteria
 - 3. Lower flammability percentage for hydrogen in air: currently 4%
- Science-based approach for liquid hydrogen:
 Developed cryo-temperature laboratory to validate liquid hydrogen models to enable risk assessment tools.

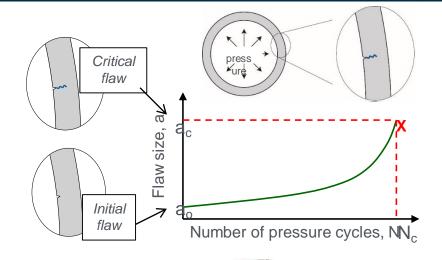


Risk Assessment for performance-based design

Leveraging science to enable infrastructure through understanding hydrogen behavior, analyzing risk, and implementing inherently safe design options

- Quantitative risk assessment (QRA) utilizes engineering models to produce risk metrics which enable performance-based design.
 - The HyRAM (Hydrogen Risk Assessment Models) tool integrates models and data to quantify risk. This QRA tool is a critical enabler for code committees to pursue datadriven decisions to provide an objective basis for code requirements.
- **Performance-based design** is a risk-enabled (via QRA), NFPA 2 compliant option for station design.
 - Developed a template, which guides the user through the PBD process
 - Connecting materials compatibility to risk assessment to enable alternative materials not currently used in hydrogen service

Hydrogen Compatibility of Materials


Performing critical materials R&D to understand material behavior in high pressure hydrogen to enable RCS in support of infrastructure deployment

Metallic Materials Compatibility

- Establish coordinated fatigue life testing and data sharing with international stakeholders
- High-hardenability steels (Ni-Cr-Mo) show similar fatigue crack growth rates as common PV steels (Cr-Mo) in gaseous hydrogen

Polymer Compatibility

- Filling the critical knowledge gap for polymer performance in H2 environments
- Initiated testing program of critical materials to understand behavior (e.g.-Tribology in 500 bar H2

Planned upgrade with vertical LVDT for in-situ wear track measurement

H2Tools: One-stop for H2 safety knowledge

- Includes resources on safety best practices, first responder training, and H₂ codes & standards
- Site visit tracking shows a global reach:
 50% of visits are international!
- Over 300,000 site visits
- Training resource translated into Japanese

Thank You

Laura Hill

Project Manager
Fuel Cell Technologies Office
laura.hill@ee.doe.gov

energy.gov/eere/fuelcells