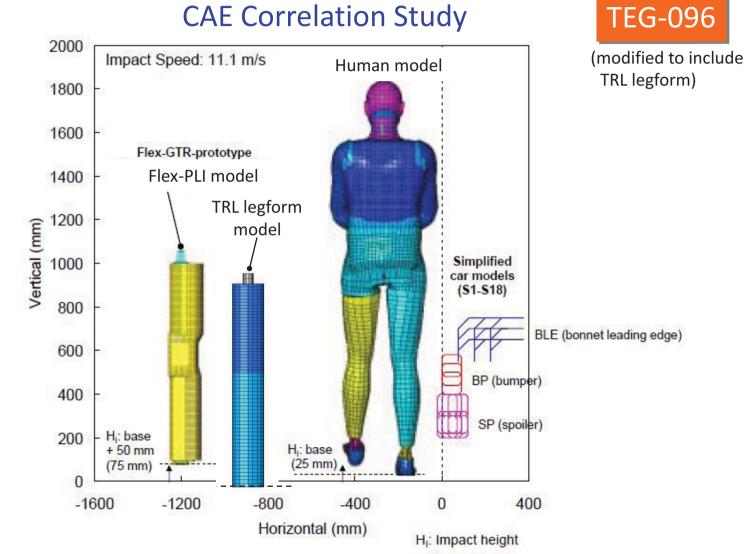
GTR9-5-12

Experimental Validation of Human and FlexPLI FE Models

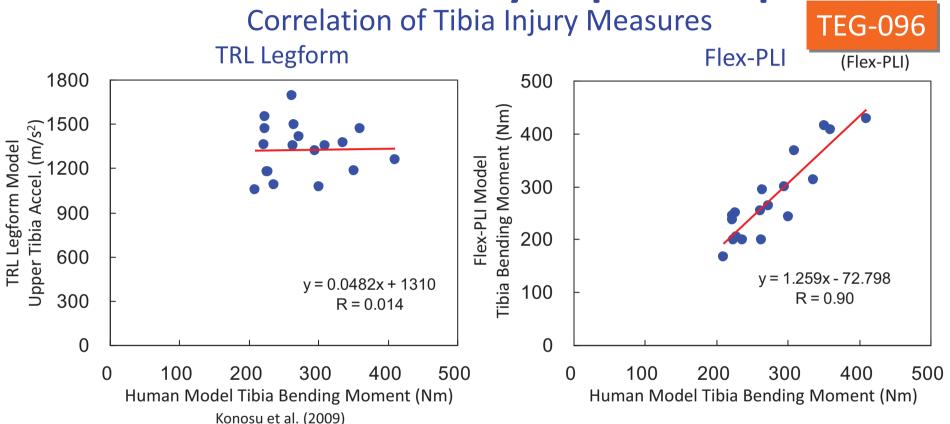
Action List Item 1. b) Assessment of biofidelity

5th IG GTR9-PH2 Meeting 6-7/December/2012 Japan Automobile Standards Internationalization Center (JASIC)


1

IWG Questions from NHTSA GTR9-5-12

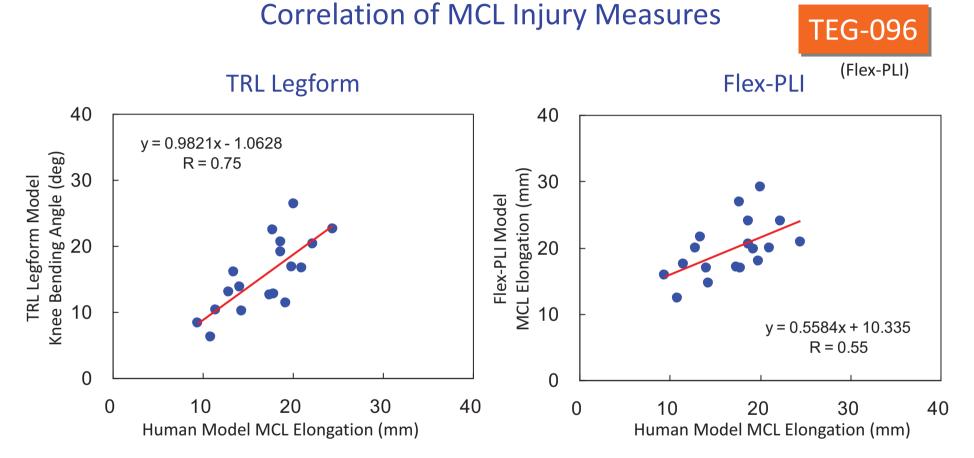
Overview of NHTSA Ped Activities Sept. 17-18, 2012		xPLI: Biofide	GTR9-4-
	Previous	Current	IWG Question
	 Reviewed literature, FlexTEG/IWG Phase 2 studies. We agree that FlexPLI covers more injuries than TRL legform. 	• We are not currently planning any biomechanical studies to directly compare Flex to human response	 What is status of JASIC/JARI CAE correlation study evaluating upper body mass effects in high bumper impacts? Experimental validation of model results would be beneficial.


Reference : National Highway Traffic Safety Administration (NHTSA), *Overview of NHTSA Pedestrian Activities*, 4th IG GTR9-PH2 Meeting Document, GTR9-4-19 (2012)

Correlation of Assembly Impact Responses

GTR9-1-05r1

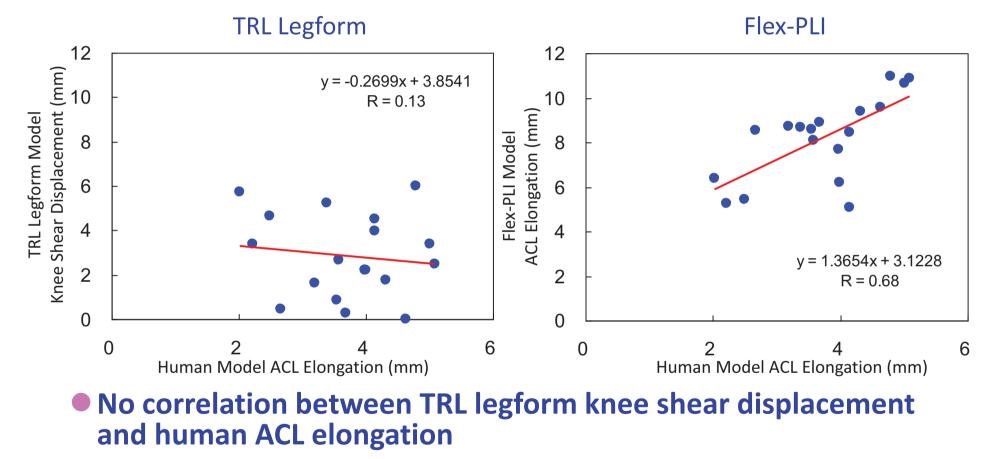
Correlation of Assembly Impact Responses



No correlation between TRL legform upper tibia acceleration and human tibia bending moment

Good correlation between Flex-PLI and human tibia bending moment

GTR9-1-05r1


Correlation of Assembly Impact Responses

Both TRL legform knee bending angle and Flex-PLI MCL elongation show good correlation with human MCL elongation

Correlation of Assembly Impact Responses

Correlation of ACL Injury Measures

Good correlation between Flex-PLI and human ACL elongation

EEVC Legform Model

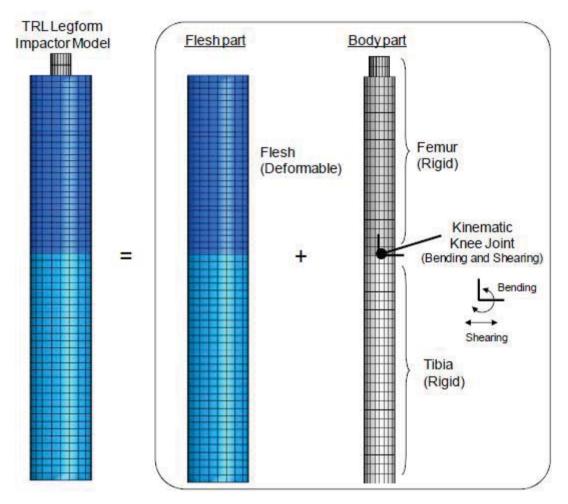


Fig. 2 - TRL Legform Impactor Model

Reference : Konosu, A. et al., *Evaluation of the Validity of the Tibia Fracture Assessment Using the Upper Tibia Acceleration Employed in the TRL Legform Impactor*, IRCOBI Conference (2009)

7

EEVC Legform Model

Meterial Property of Confor Foam

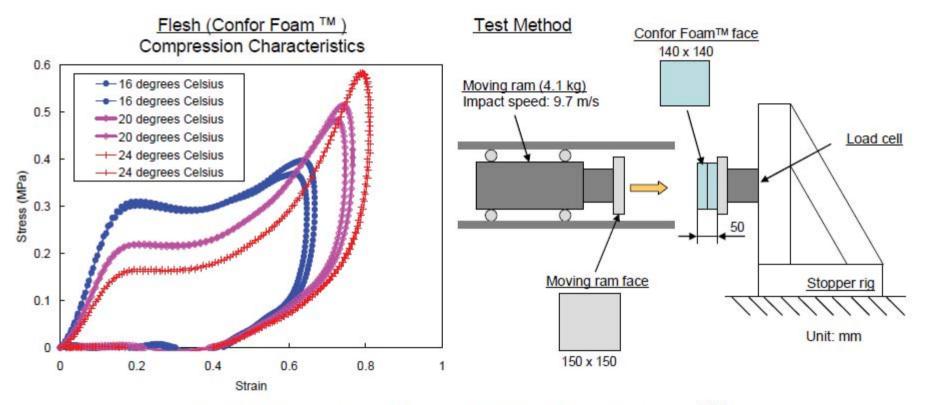


Fig. 3 - Compression Characteristics of Confor Foam TM

Stress-strain curve at 20 degrees Celsius was applied

Reference : Konosu, A. et al., *Evaluation of the Validity of the Tibia Fracture Assessment Using the Upper Tibia Acceleration Employed in the TRL Legform Impactor*, IRCOBI Conference (2009)

EEVC Legform Model

Validation of Knee Shear and Bending Characteristics against Certification Corridors

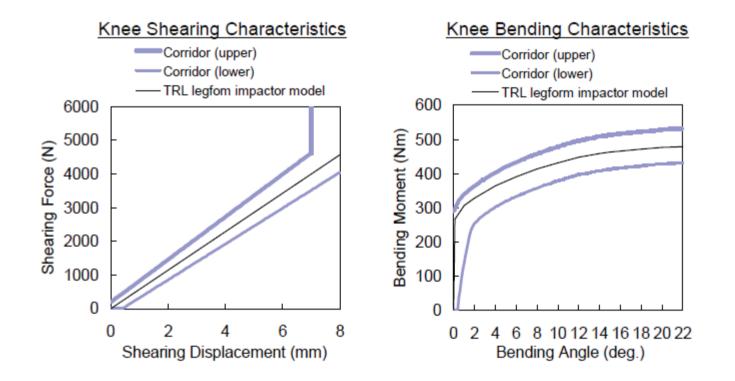


Fig. 4 - Knee Bending and Shearing Characteristics of TRL Legform Impactor Model

Reference : Konosu, A. et al., *Evaluation of the Validity of the Tibia Fracture Assessment Using the Upper Tibia Acceleration Employed in the TRL Legform Impactor*, IRCOBI Conference (2009)

EEVC Legform Model GTR9-5-12

Assembly Level Validation against Dynamic Certification Test

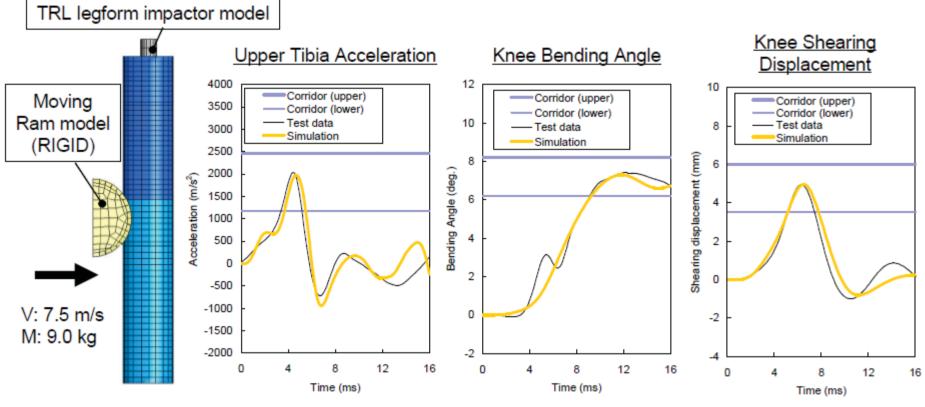
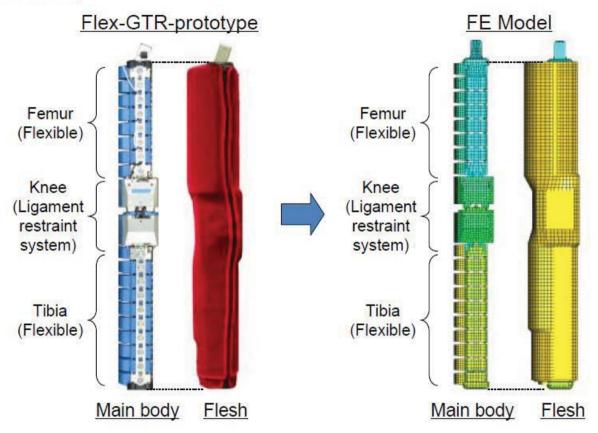
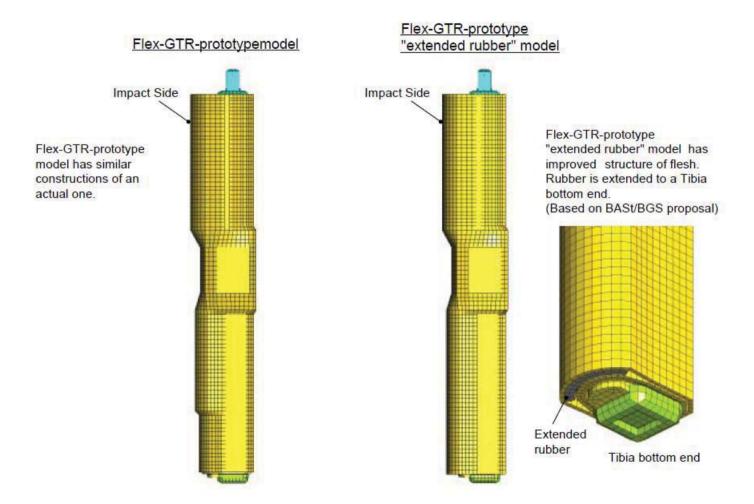
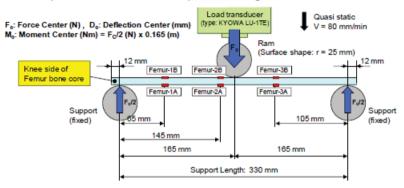



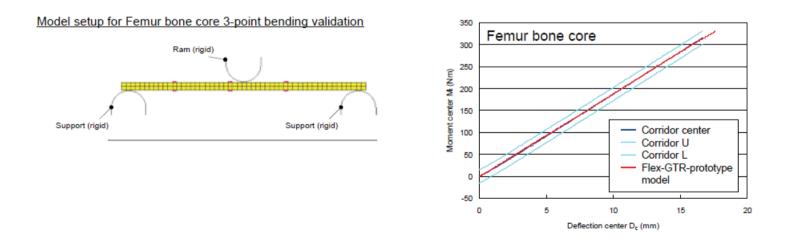
Fig. 5 - Dynamic Certification Test Simulation Results

Reference : Konosu, A. et al., *Evaluation of the Validity of the Tibia Fracture Assessment Using the Upper Tibia Acceleration Employed in the TRL Legform Impactor*, IRCOBI Conference (2009)



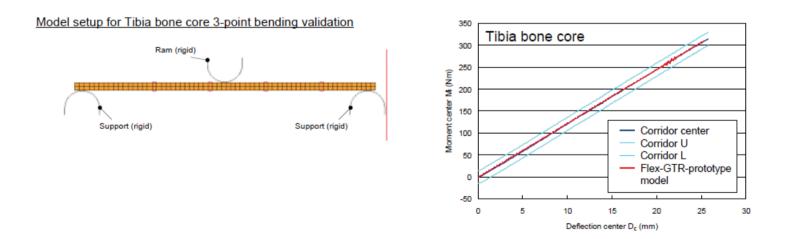
Flex-GTR-prototype and Developed FE model (Overview)


Flex-GTR-prototype models



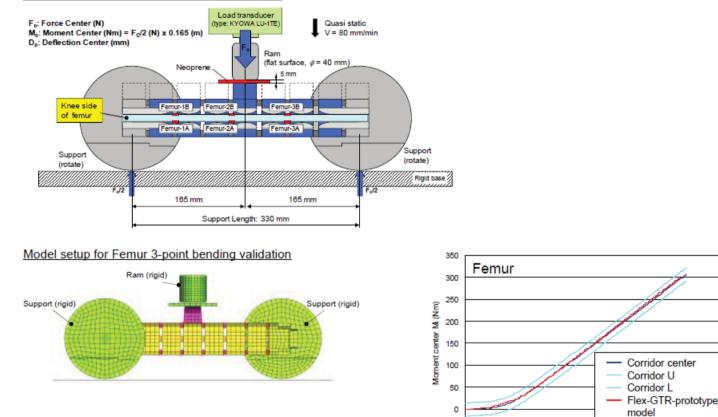
Femur bone core 3-point bending validation

Test setup for Femur bone core 3-point bending validation



Tibia bone core 3-point bending validation

Test setup for Tibia bone core 3-point bending validation



Femur 3-point bending validation

Test setup for Femur 3-point bending validation

Reference : JAMA/JARI, *Development of a FE Flex-GTR-prototype model and Analysis of the Correlation between the Flex-GTR-prototype and Human Lower Limb Outputs using Computer Simulation Models*, 8th Flex-TEG Meeting Document, TEG-096 (2009)

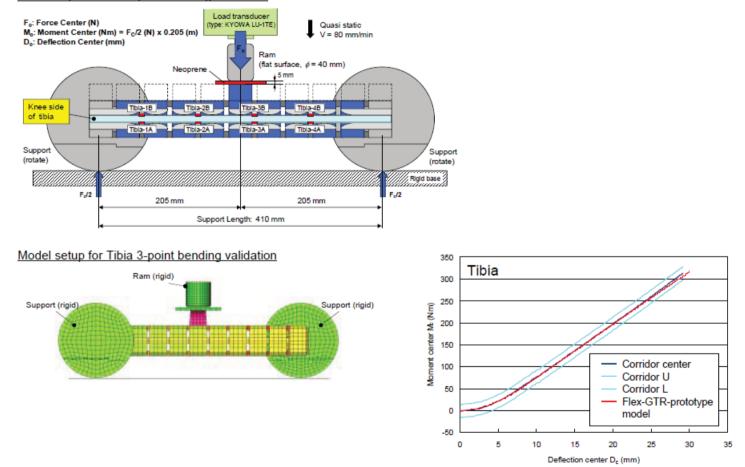
-50 L 0

5

10

Deflection center D_c (mm)

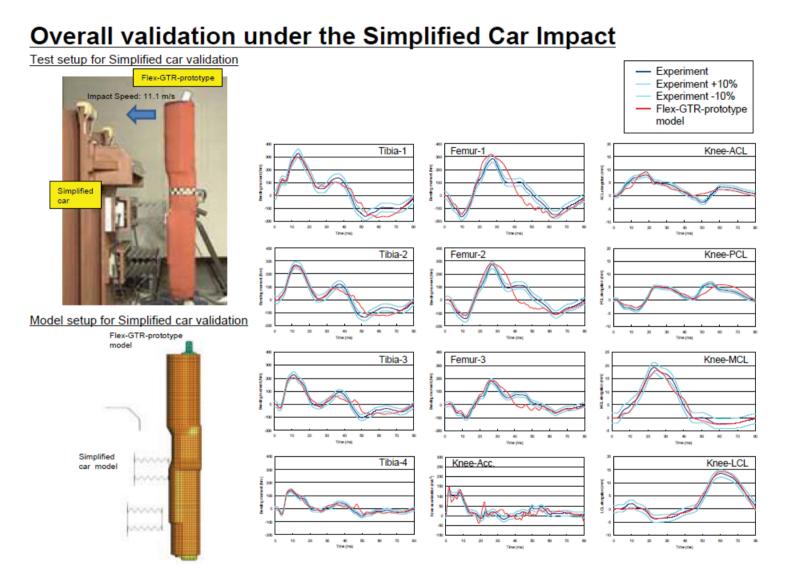
15


20

25

Tibia 3-point bending validation

Test setup for Tibia 3-point bending validation



Knee 3-point bending validation 500 MCL 400 Test setup for Knee 3-point bending validation 300 F_c: Force Center - at Knee joint surface (N) = F₁ (N) + F₂ (N) M.: Moment Center - at Knee joint surface (Nm) = F1 (N) x 0.2 (m) 200 D.: Deflection Center (mm) Quasi static l = 50 mm/minProximal end Ram (r = 50 mm) of knee Neoprene 5 mm 15 20 10 25 30 35 0 MCL elongation (mm) La AC ÍΡα Support Support MCL ACL (rotate) 12 (rotate) 10 Load transducer (F₂) (type: KYOWA M4AL2-2TP-4 Load transducer (F₁) (type: KYOWA M4AL2-2TP-F (fixed) (fixed) Rigid base 200 mm 200 mm Support Length: 400 mm Model setup for Knee 3-point bending validation ۰ 1000 2000 6000 3000 4000 5000 Ram (rigid) Force center F. (N) Support (rigid) Support (rigid) PCL 12 Corridor center Corridor U Corridor L -2 Flex-GTR-prototype model ٥ 1000 2000 3000 4000 5000 6000

Reference : JAMA/JARI, Development of a FE Flex-GTR-prototype model and Analysis of the Correlation between the Flex-GTR-prototype and Human Lower Limb Outputs using Computer Simulation Models, 8th Flex-TEG Meeting Document, TEG-096 (2009)

Force center Fc (N)

Human Model

GTR9-5-12

Fig. 6 - General Information for Human Model

Reference : Konosu, A. et al., *Evaluation of the Validity of the Tibia Fracture Assessment Using the Upper Tibia Acceleration Employed in the TRL Legform Impactor*, IRCOBI Conference (2009)

Human Model Validation Matrix GTR9-5-12

Body	Region /Tissue	Loading Rate	Loading Configuration	Properties
Thigh	Isolated femur	 Dynamic, 1 rate 	 3-point bending 3 loading locations	Force-deflectionMoment-deflection
	Femur+flesh	 Dynamic, 1 rate 	 3-point bending 2 loading locations	Force-deflectionMoment-deflection
Knee	Isolated ligament	Quasi-staticDynamic, 3 rates	ACL, PCL, MCL and LCLTension	 Force-deflection
	Isolated knee joint	 Dynamic, 1 rate 	4-point bending	 Moment-angle
Leg	Isolated tibia	 Dynamic, 1 rate 	 3-point bending 3 loading locations	Force-deflectionMoment-deflection
	Isolated fibula	 Dynamic, 1 rate 	 3-point bending 3 loading locations	Force-deflectionMoment-deflection
	Tibia+fibula+flesh	 Dynamic, 1 rate 	 3-point bending 3 loading locations	Force-deflectionMoment-deflection
Whole I	body	40 km/h impact	 Lateral impact 1 small sedan, 1 large SUV 	 Head, T1, T8, pelvis trajectories Pelvis and lower limb injury distribution

Isolated Femur, Tibia and Fibula

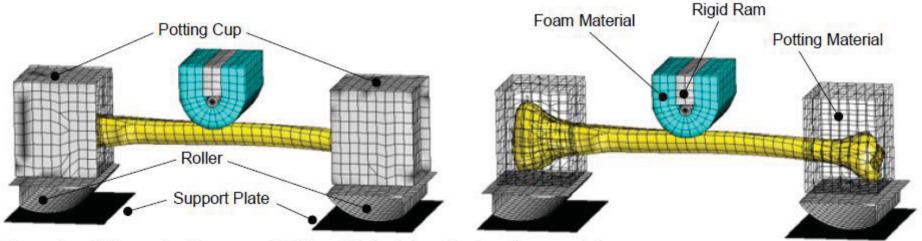


Figure 6. Schematic diagram of tibia mid-shaft 3-point bending model.

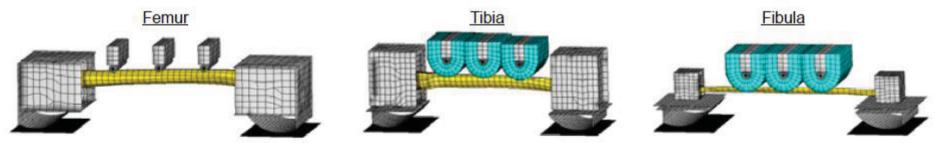


Figure 7. Model setups for 3-point bending of femur, tibia, and fibula.

Validation against dynamic 3-point bending tests at three loading locations by Kerrigan et al. (2003)

Reference : Takahashi, Y. et al., *Advanced FE Lower Limb Model for Pedestrians*, 18th ESV Conference (2003) Kerrigan, J. et al., *Experiments for Establishing Pedestrian-Impact Lower Limb Injury Criteria*, SAE Paper #2003-01-0895 (2003)

Isolated Femur, Tibia and Fibula – Force-Deflection

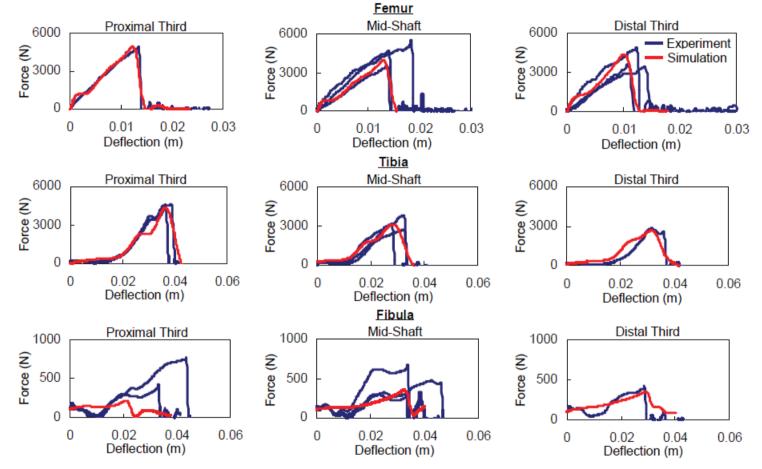


Figure 9. Comparison of force-deflection response to failure between experiment and computer simulation in dynamic 3-point bending.

Reference : Takahashi, Y. et al., *Advanced FE Lower Limb Model for Pedestrians*, 18th ESV Conference (2003) Kerrigan, J. et al., *Experiments for Establishing Pedestrian-Impact Lower Limb Injury Criteria*, SAE Paper #2003-01-0895 (2003)

Isolated Femur, Tibia and Fibula – Moment-Deflection

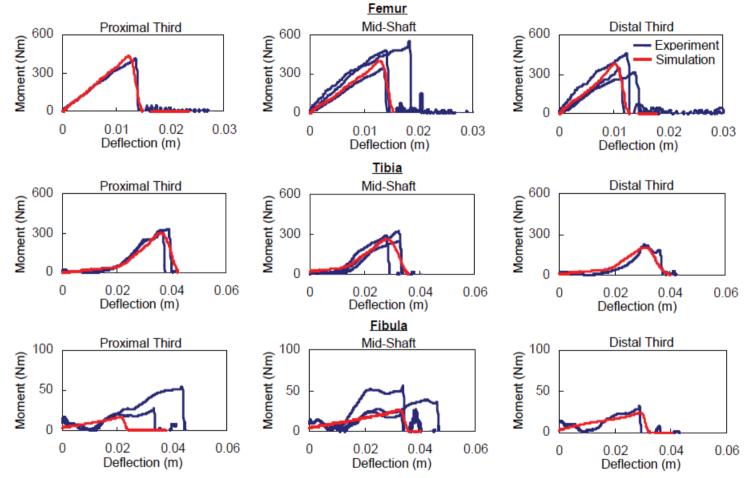


Figure 10. Comparison of moment-deflection response to failure between experiment and computer simulation in dynamic 3-point bending.

Reference : Takahashi, Y. et al., *Advanced FE Lower Limb Model for Pedestrians*, 18th ESV Conference (2003) Kerrigan, J. et al., *Experiments for Establishing Pedestrian-Impact Lower Limb Injury Criteria*, SAE Paper #2003-01-0895 (2003)

Thigh (Femur w/Flesh) and Leg (Tibia&Fibula w/Flesh)

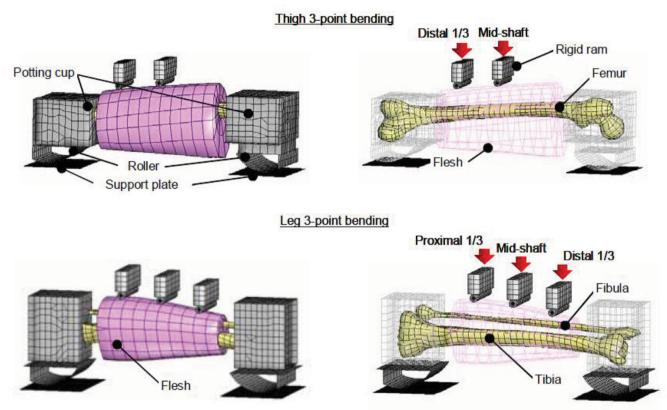
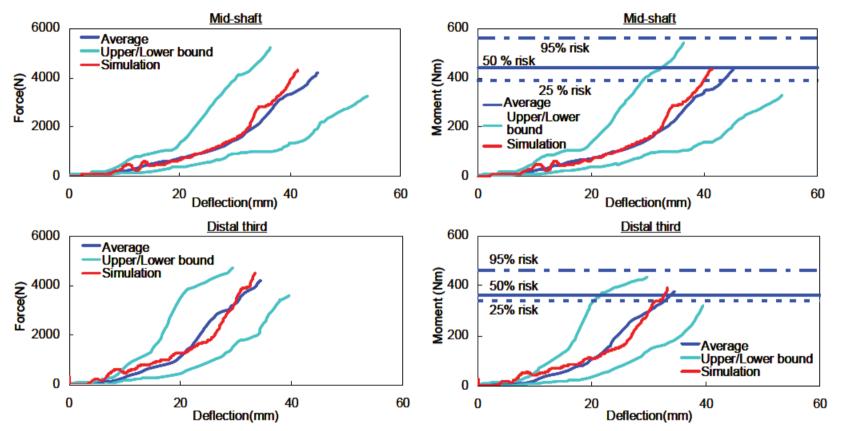


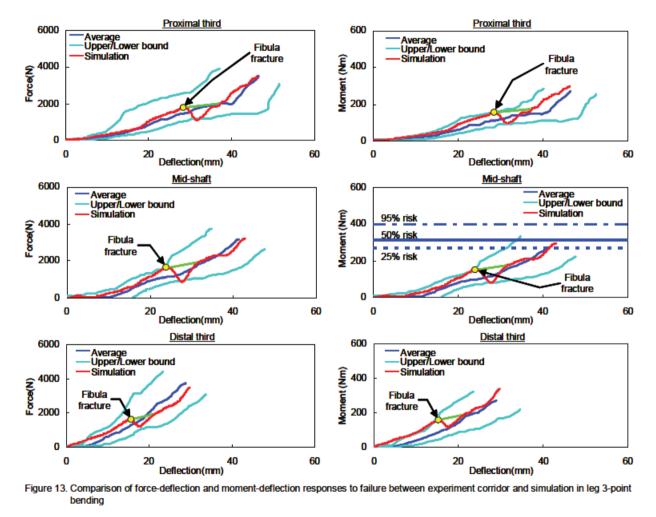
Figure 11. Model setup for 3-point bending of thigh and leg

Validation against dynamic 3-point bending tests at multiple loading locations by Ivarsson et al. (2004)

Reference : Kikuchi, Y. et al., *Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb*, SAE World Congress, Paper #2006-01-0683 (2006) Ivarsson, J. et al., *Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities*, IRCOBI Conference (2004)

Thigh (Femur w/Flesh)

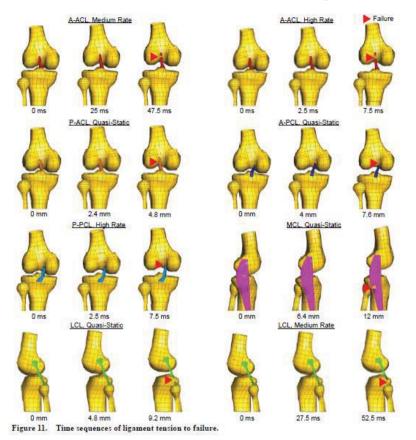



Figure 12. Comparison of force-deflection and moment-deflection responses to failure between experiment corridor and simulation in thigh 3-point bending

Reference : Kikuchi, Y. et al., *Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb*, SAE World Congress, Paper #2006-01-0683 (2006) Ivarsson, J. et al., *Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities*, IRCOBI Conference (2004)

GTR9-5-12

Human Model Validation

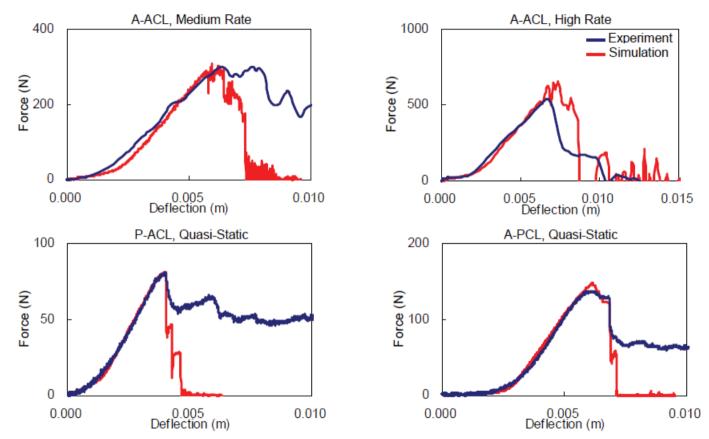

Leg (Tibia&Fibula w/Flesh)

Reference : Kikuchi, Y. et al., *Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb*, SAE World Congress, Paper #2006-01-0683 (2006)

Ivarsson, J. et al., *Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities*, IRCOBI Conference (2004)

Isolated Knee Ligaments – Takahashi et al. (2003)

Table 1. Test conditions for which test results were available


GTR9-5-12

\bigcirc	Quasi-static (1mm/min)	Medium Rate (160mm/s)	High Rate (1600mm/s)
A-ACL			
P-ACL			
A-PCL			
P-PCL			
MCL			
LCL			
			available

Validation against quasi-static and dynamic tensile tests by Bose et al. (2004)

Reference : Takahashi, Y. et al., *Advanced FE Lower Limb Model for Pedestrians*, 18th ESV Conference (2003) Bose, D. et al., *Material Characterization of Ligaments using Non-Contact Strain Measurement and Digitization*, International Workshop on Human Subjects for Biomechanical Research (2002)

Isolated Knee Ligaments – Takahashi et al. (2003)

Anterior and posterior bundles of ACL and PCL were individually validated

Reference : Takahashi, Y. et al., Advanced FE Lower Limb Model for Pedestrians, 18th ESV Conference (2003) Bose, D. et al., Material Characterization of Ligaments using Non-Contact Strain Measurement and Digitization, International Workshop on Human Subjects for Biomechanical Research (2002)

GTR9-5-12

Human Model Validation

Isolated Knee Ligaments – Takahashi et al. (2003)

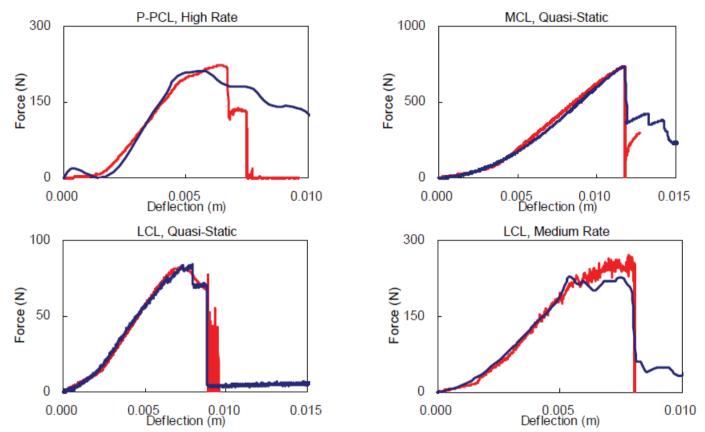


Figure 12. Comparison of force-deflection response to failure between experiment and computer simulation in quasi-static and dynamic tensile tests.

Reference : Takahashi, Y. et al., Advanced FE Lower Limb Model for Pedestrians, 18th ESV Conference (2003) Bose, D. et al., Material Characterization of Ligaments using Non-Contact Strain Measurement and Digitization, International Workshop on Human Subjects for Biomechanical Research (2002)

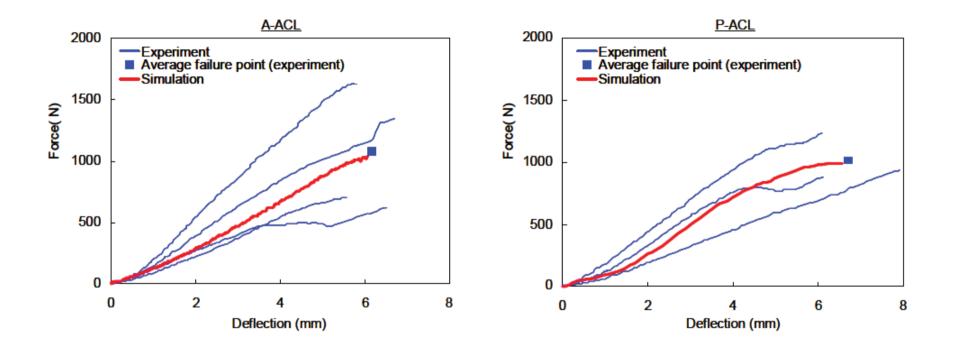
GTR9-5-12

Human Model Validation

Isolated Knee Ligaments – Kikuchi et al. (2006)

	Bose et al. A : van Dommelen et al.		
\ge	Quasi-static (1mm/min)	Medium rate (160mm/s)	High rate (1600mm/s)
A-ACL			■/▲
P-ACL			A
A-PCL			A
P-PCL			■/▲
LCL	■/ ▲		
MCL	■/ ▲		

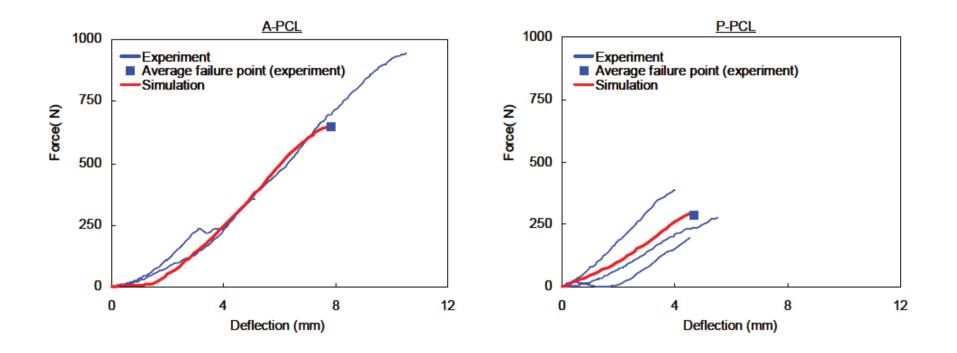
Table 2. Test conditions for which test results were available


Further validation at high rate (1600 mm/s) against dynamic tensile tests by Bose et al. (2004) combined with van Dommelen et al. (2005)

Reference : Kikuchi, Y. et al., *Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb*, SAE World Congress, Paper #2006-01-0683 (2006)

Bose, D. et al., *Material Characterization of Ligaments using Non-Contact Strain Measurement and Digitization*, International Workshop on Human Subjects for Biomechanical Research (2002) van Dommelen, J. A. W. et al., *Characterization of the Rate-Dependent Mechanical Properties and Failure of Human*

Knee Ligament, SAE paper #2005-01-0293 (2005)


Isolated Knee Ligaments – Kikuchi et al. (2006)

Reference : Kikuchi, Y. et al., *Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb*, SAE World Congress, Paper #2006-01-0683 (2006)

Bose, D. et al., *Material Characterization of Ligaments using Non-Contact Strain Measurement and Digitization*, International Workshop on Human Subjects for Biomechanical Research (2002) van Dommelen, J. A. W. et al., *Characterization of the Rate-Dependent Mechanical Properties and Failure of Human Knee Ligament*, SAE paper #2005-01-0293 (2005)

Isolated Knee Ligaments – Kikuchi et al. (2006)

Reference : Kikuchi, Y. et al., *Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb*, SAE World Congress, Paper #2006-01-0683 (2006)

Bose, D. et al., *Material Characterization of Ligaments using Non-Contact Strain Measurement and Digitization*, International Workshop on Human Subjects for Biomechanical Research (2002) van Dommelen, J. A. W. et al., *Characterization of the Rate-Dependent Mechanical Properties and Failure of Human Knee Ligament*, SAE paper #2005-01-0293 (2005)

Isolated Knee Ligaments – Kikuchi et al. (2006)

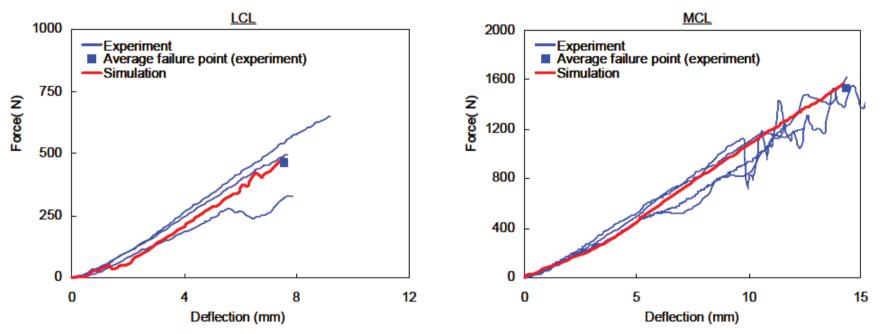
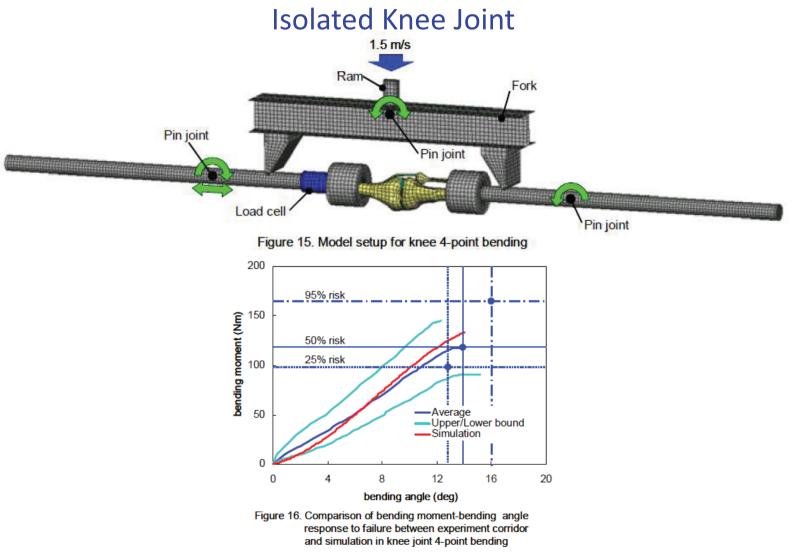



Figure 14. Comparison of force-deflection response to failure at 1600 mm/s between experiment and simulation

Reference : Kikuchi, Y. et al., *Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb*, SAE World Congress, Paper #2006-01-0683 (2006)

Bose, D. et al., *Material Characterization of Ligaments using Non-Contact Strain Measurement and Digitization*, International Workshop on Human Subjects for Biomechanical Research (2002) van Dommelen, J. A. W. et al., *Characterization of the Rate-Dependent Mechanical Properties and Failure of Human Knee Ligament*, SAE paper #2005-01-0293 (2005)

Reference : Kikuchi, Y. et al., *Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb*, SAE World Congress, Paper #2006-01-0683 (2006)

Ivarsson, J. et al., *Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities*, IRCOBI Conference (2004)

Whole Body

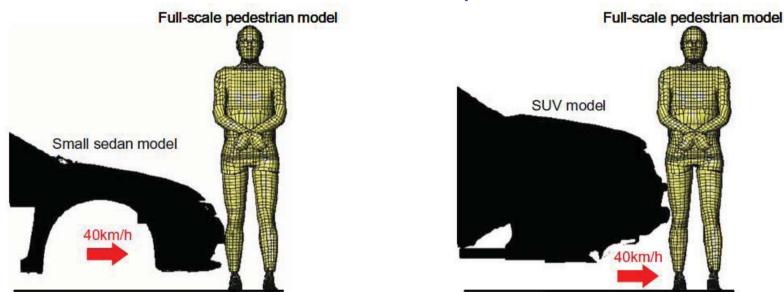
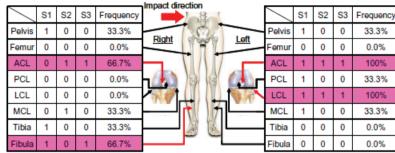


Figure 12. Model set-up for small sedan and SUV

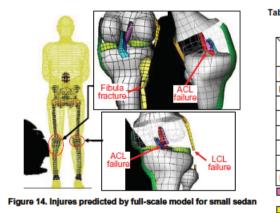
Validation of pelvis/lower limb injury prediction and upper body kinematics for small sedan and large SUV impact tests by Kerrigan et al. (2005a, 2005b, 2008)

Reference : Kikuchi, Y. et al., *Full-Scale Validation of a Human FE Model for the Pelvis and Lower Limb of a Pedestrian*, SAE World Congress, Paper #2008-01-1243 (2008)


Kerrigan J. et al., *Kinematic Corridors for PMHS Tested in Full-Scale Pedestrian Impact Tests*, 19th ESV Conference, Paper #05-0394 (2005a)

Kerrigan J. et al., *Kinematic Comparison of the Polar-II and PMHS in Pedestrian Impact Tests with a Sport-Utility Vehicle*, IRCOBI Conference (2005b)

Kerrigan J. et al., *Pedestrian Lower Extremity Response and Injury: Small Sedan vs. Large SUV*, SAE World Congress, Paper #2008-01-1245 (2008)


GTR9-5-12

Whole Body – Pelvis/Lower Limb Injury Prediction

Injury observed in two or more out of three cases

Figure 13. Injured pelvis and lower limb regions in car-pedestrian impact tests using small sedan for each subject (S1-3: subject number)

ble 2. Comparison of injured pelvis and low limb regions between experiment and FE prediction for small sedan impact				
	Right		Left	
	Exp.	Simulation	Exp.	Simulation
Pelvis	33.3%	No injury	33.3%	No injury
Femur	0.0%	No injury	0.0%	No injury
ACL	66.7%	Failure	100%	Failure
PCL	0.0%	No injury	33.3%	No injury
LCL	0.0%	No injury	100%	Failure
MCL	33.3%	No injury	33.3%	No injury
Tibia	33.3%	No injury	0.0%	No injury
Fibula	66.7%	Fracture	0.0%	No injury
Injury observed in two or more out of three cases Injury pedestrian by full-scale model				

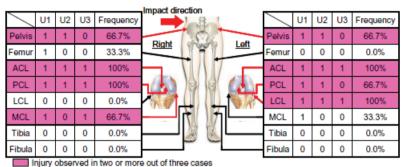
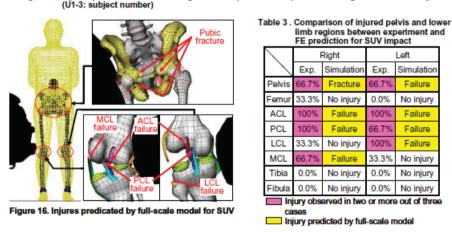
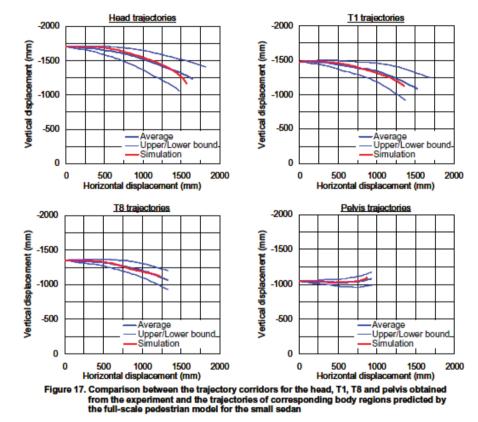



Figure 15. Injured pelvis and lower limb regions in car-pedestrian impact tests using SUV for each subject

Reference : Kikuchi, Y. et al., *Full-Scale Validation of a Human FE Model for the Pelvis and Lower Limb of a Pedestrian*, SAE World Congress, Paper #2008-01-1243 (2008)


Kerrigan J. et al., *Kinematic Corridors for PMHS Tested in Full-Scale Pedestrian Impact Tests*, 19th ESV Conference, Paper #05-0394 (2005a)

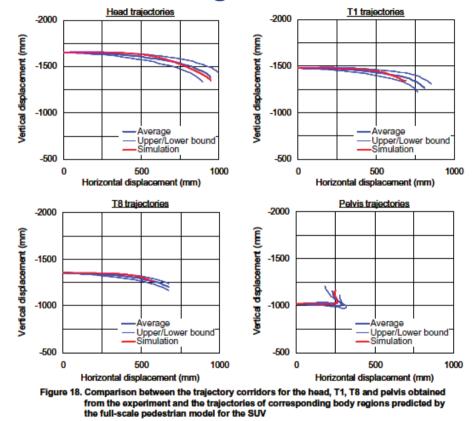
Kerrigan J. et al., *Kinematic Comparison of the Polar-II and PMHS in Pedestrian Impact Tests with a Sport-Utility Vehicle*, IRCOBI Conference (2005b)

Kerrigan J. et al., *Pedestrian Lower Extremity Response and Injury: Small Sedan vs. Large SUV*, SAE World Congress, Paper #2008-01-1245 (2008) 36

Whole Body – Upper Body Kinematics

Small Sedan

Reference : Kikuchi, Y. et al., *Full-Scale Validation of a Human FE Model for the Pelvis and Lower Limb of a Pedestrian*, SAE World Congress, Paper #2008-01-1243 (2008)


Kerrigan J. et al., *Kinematic Corridors for PMHS Tested in Full-Scale Pedestrian Impact Tests*, 19th ESV Conference, Paper #05-0394 (2005a)

Kerrigan J. et al., *Kinematic Comparison of the Polar-II and PMHS in Pedestrian Impact Tests with a Sport-Utility Vehicle*, IRCOBI Conference (2005b)

Kerrigan J. et al., *Pedestrian Lower Extremity Response and Injury: Small Sedan vs. Large SUV*, SAE World Congress, Paper #2008-01-1245 (2008) 37

Whole Body – Upper Body Kinematics

Large SUV

Reference : Kikuchi, Y. et al., *Full-Scale Validation of a Human FE Model for the Pelvis and Lower Limb of a Pedestrian*, SAE World Congress, Paper #2008-01-1243 (2008)

Kerrigan J. et al., *Kinematic Corridors for PMHS Tested in Full-Scale Pedestrian Impact Tests*, 19th ESV Conference, Paper #05-0394 (2005a)

Kerrigan J. et al., *Kinematic Comparison of the Polar-II and PMHS in Pedestrian Impact Tests with a Sport-Utility Vehicle*, IRCOBI Conference (2005b)

Kerrigan J. et al., *Pedestrian Lower Extremity Response and Injury: Small Sedan vs. Large SUV*, SAE World Congress, Paper #2008-01-1245 (2008) 38

References

- National Highway Traffic Safety Administration (NHTSA), Overview of NHTSA Pedestrian Activities, 4th IG GTR9-PH2 Meeting Document, GTR9-4-19 (2012)
- Japan Automobile Standards Internationalization Center (JASIC), Technical Discussion -Biofidelity, 1st IG GTR9-PH2 Meeting Document, GTR9-1-05r1 (2011)
- Konosu, A. et al., Evaluation of the Validity of the Tibia Fracture Assessment Using the Upper Tibia Acceleration Employed in the TRL Legform Impactor, IRCOBI Conference (2009)
- Takahashi, Y. et al., Advanced FE Lower Limb Model for Pedestrians, 18th ESV Conference (2003)
- Kerrigan, J. et al., *Experiments for Establishing Pedestrian-Impact Lower Limb Injury Criteria*, SAE Paper #2003-01-0895 (2003)
- Kikuchi, Y. et al., *Development of a Finite Element Model for a Pedestrian Pelvis and Lower Limb*, SAE World Congress, Paper #2006-01-0683 (2006)
- Ivarsson, J. et al., Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities, IRCOBI Conference (2004)
- Bose, D. et al., Material Characterization of Ligaments using Non-Contact Strain Measurement and Digitization, International Workshop on Human Subjects for Biomechanical Research (2002)

- •van Dommelen, J. A. W. et al., *Characterization of the Rate-Dependent Mechanical Properties and Failure of Human Knee Ligament*, SAE paper #2005-01-0293 (2005)
- Kikuchi, Y. et al., Full-Scale Validation of a Human FE Model for the Pelvis and Lower Limb of a Pedestrian, SAE World Congress, Paper #2008-01-1243 (2008)
- Kerrigan J. et al., Kinematic Corridors for PMHS Tested in Full-Scale Pedestrian Impact Tests, 19th ESV Conference, Paper #05-0394 (2005a)
- Kerrigan J. et al., *Kinematic Comparison of the Polar-II and PMHS in Pedestrian Impact Tests with a Sport-Utility Vehicle*, IRCOBI Conference (2005b)
- Kerrigan J. et al., Pedestrian Lower Extremity Response and Injury: Small Sedan vs. Large SUV, SAE World Congress, Paper #2008-01-1245 (2008)

GTR9-5-12

Thank you for your attention