

ISO/SAE Status Report: Quiet Car

December 5, 2012 QRTV IG #2 Berlin, Germany

Overview

- Provide QRTV IG with in-progress findings of SAE/ISO workgroup.
 - Testing and measurement issues to provide accurate, repeatable, and reproducible measurement results at the test conditions identified in the NHTSA/Volpe research report on proposed sound specifications.
- Issues identified
- Ideas for improvement and optimization
- Next Steps

Comparison of SAE/ISO and VOLPE/NHTSA

Technical Point	Current ISO(16254) and SAE (J2889-1)	Volpe/NHTSA proposal
Vehicle test conditions	0 km/h (stationary) and 10 km/h cruise. Implied ability to test 0 km/h with microphones in front or rear of vehicle	0 km/h (stationary) with microphones in front and rear. 10, 20, 30 km/h cruise.
Measurement metric(s)	Overall sound pressure level (SPL, db(A)), pitch shift (% per km/h)	1/3 octave frequency at eight (8) bands in range [315 -5000] Hz
Information metric	1/3 octave frequency spectrum at value corresponding to reported SPL	Not specific, although modulation is discussed.
Indoor test	Permitted if facility requirements met	No mention. Assumed all measurements outdoors.
Component test	Permitted if facility requirements met. Practical experience shows necessary for pitch shift.	No mention.
Pitch Shift	Based on narrowband analysis and assumed foreknowledge of signal. Component test permitted.	Not specific, Tone-to-Noise ratio discussed. Assumed full vehicle test.

Data Collection Plan

- ISO/SAE developed data collection plan to address published VOLPE/NHTSA research report.
 - Work Package 1: Measurement of vehicles at the conditions outlined by NHTSA/Volpe in the published research report. Measurements include both Indoor and Outdoor evaluations.
 - Data collected to date: Background noise evaluations, vehicle measurements
 - Work package 2: Measurement of interior sound (recordings and analysis),
 Evaluation of transmission loss.
 - Data collected to date: Recordings available, Transmission Loss evaluated.
 - Work Package 3: Correlation of detection and recognition to proposed levels.
 - Data collected to date: Jury evaluations of detection and recognition
 - Work Package 4: Measurement of Frequency shift at conditions outlined in NHTSA/Volpe research report
 - Data collected to date: Indoor and outdoor evaluations

Presentation of data collected to date

- Ambient noise levels spectral variability.
- Vehicle measurement results
 - 1/3 octave variability
 - ICE vehicle results (To be presented by OICA)
 - Indoor/Outdoor comparison
 - Measurement of Pitch Shift

Vehicle detection and recognition studies

Work Package 1 Data

- Ambient noise measurements
 - Results from multiple locations at multiple times

- Vehicle noise measurements (OICA)
 - Internal combustion vehicles
 - Vehicles where countermeasures are foreseen

Background Noise Test Track ~ 2h

Fluctuation of ambient noise in outdoor

Need engineering judgment. We can do for OA but cannot do for 1/3 octave

Background Noise Test Track ~ 15min

Outdoor Ambient Noise Variability – 10 seconds

Outdoor Ambient Noise Variability 1/3 octaves over 10 sec

Indoor Ambient Noise Variability -10 seconds

Indoor Ambient Noise Variability -10 seconds

Ambient noise in outdoor compared with sound level of ICE

1/3 octave analyses are significantly influenced at a proving ground where the background noise is less than 10dB difference between test object and ambient noise at each 1/3 octave band of interest.

Ambient noise variation in several proving grounds

1/3Oct. ICE(0km/h, 10km/h)S/N>10dB

Vehicle Test Data

• Run to Run variation

Vehicle Measurements - Electric

Vehicle Measurements -ICE

Example of dispersion in each measurement: 10 km/h cruise @ISO test track

Example of dispersion in each measurement: 10 km/h cruise @ISO test track

The variation of OA level is within 2dB. Normally the data within 2dB are valid, But the variations of 1/3 octave level are much more than 2dB.

Example of dispersion in each measurement: 10 km/h cruise @ISO test track

1/3-octave Requirements: Run-to-Run Variability

■ Are the 1/3 octave levels more variable than the overall levels?

Indoor/Outdoor Comparison

"Outoor" vs "Indoor"

Conformity between outdoor and indoor test results is well.

Work Package 3

Evaluation of detection and recognition models

Detection/Recognition Study Background

- Binaural recordings made of 5 vehicles:
 - C-segment ICE
 - C-segment BEV w/three different alert sounds
 - C-segment BEV competitor with alert
- Detection
 - ■Recordings were mixed with 55dBA Pedersen noise and presented over headphone to 28 subjects
 - 24 normal vision, 4 visually impaired
 - ■10 kph passbys were used to evaluate detection distances
 - Subjects clicked a mouse when the first heard the vehicle
 - Detection distances were calculated

Detection/Recognition Study Background

- Recognition
 - ■Recordings were mixed with 55dBA Pedersen noise and presented over headphone to 28 subjects
 - 24 normal vision, 4 visually impaired
 - Evaluation conditions
 - ■10 kph pass-bys
 - Other conditions in progress
 - 1-5 recognition scale used

Detection Results

Detection Results

Note: Two subjects indicated known hearing loss

1/3-octave Requirements Compared to Vehicles used in the Study – 10 kph

Minimum Required Frequency Content compared with Study Vehicles Condition: 10kph Pass-by @ PP' Line, Location: Driver Side Mic.

Minimum Required Frequency Content compared with Study Vehicles Condition: 10kph Pass-by @ PP' Line, Location: Pass. Side Mic.

- Recognition Results w/significance groupings
 - 10 kph Pass-by

Work Package 4

Pitch Shift Measurement and Analysis

Pitch Shift – Outdoor 10 kph

Pitch Shift – Outdoor 20 kph

Pitch Shift – Outdoor 30 kph

Pitch Shift – Indoor Stationary

Pitch Shift 10kph Indoor

Pitch Shift 20 kph Indoor

Pitch Shift 30 kph Indoor

Examples of measurement results @ Semi-anechoic room (using external speed signal)

EV+AVAS

Examples of detailed measurement results @ Semi-anechoic room

Tonal Identification

Identification of tone below 400 Hz:

Spectra of BEV Alert B

- stationary condition
- Frequency resolution =1 Hz
- window= Hanning
- overlap=75%
- averages = 65

Tone-to-Noise Ratio (TNR) > 6dB

- TNR compares tone power to noise power in a Critical Band
- Issue: How to deal with other tones in the same Critical Band?

Frequency Shifting

Frequency Shifting of 1% per kph:

Frequency Shifting

Frequency Shifting of 1%/kph:

Spectra of BEV Alert C

- stationary condition
 - Frequency resolution =1 Hz
 - window= Hanning
 - overlap=75%
 - averages = 65

•10 kph

- Frequency resolution =1 Hz
- window= Hanning
- overlap=75%
- Last 1 sec before PP'

Challenging to manually track tone(s) when they are clustered together.

Issues Identified

- Measurement and correction for 1/3 octave data.
 - Min, max, L vs. R, Ave., Time slice, windows, filters, averaging.
- Measurement uncertainty all sources
 - Run to run
 - Day to day
 - Site to site
 - ISO has standard procedures and processes ("GUM") for evaluation of uncertainty that are required for every published International Standard.
- Use of minimum sound levels in 1/3 octaves for detection and recognition
 - Confirmation with existing IC vehicles
 - Confirmation with Jury evaluations
- Pitch Shift measurement and analysis
 - Ability to measure full vehicle at higher speeds (20, 30 kph)
 - Specification of measurement and analysis methods.
 - Prior knowledge of signals

Ideas for Improvement and Optimization

- Use of indoor facilities and their widespread availability
 - Solves background noise issues
 - Potential reduction in run to run variability
 - 7.5m passby facility not necessary -> 2m facilities with cutoff frequencies below 200Hz are widely available.
- Revised 1/3 octaves
 - Consistent with data presented.
 - Further data to be considered
- Revised Pitch shift measurement and analysis
 - Measurement at component level
 - Full vehicle acceleration measurement

Next Steps

- Incorporation of comments from industry, government, and SAE/ISO on measurement program.
 - Recent ISO WG42 full committee meeting in Brazil to discuss comments on ISO/CD 16254
- Conclusion of measurements by Dec 2012.
 - Joint ISO WG42 / SAE TF3 meeting Dec. 11th (Detroit) to consider final results, comments, and to determine necessary revisions to the test procedures.
 - Expect updates to draft ISO/SAE test procedures to handle editorial, clarification, and technical issues relating to pitch shift measurement in near term (3-4 months)
 - Development of test procedure for 1/3 octave measurement and measurement of "commencing motion" will require additional time

Ambient noise variation in several prouving grounds

Ambient noise variation in several prouving grounds

1/3Oct. ICE(0km/h, 10km/h)S/N>10dB

Example of dispersion in each measurement: 10 km/h cruise @ISO test track

The variation of OA level is within 2dB. Normally the data within 2dB are valid, But the variations of 1/3 octave level are much more than 2dB.