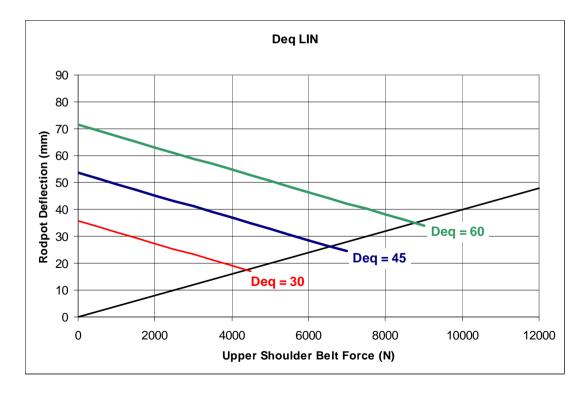


Informal Group on Frontal Impact GRSP November 23th, 2012

Simplified calculation



Simplified calculation

The following formula provides an approximate result and allows understanding the effect of the main components of Deq:

 $\begin{aligned} \text{Deq LIN} &\Leftrightarrow 6.6*\text{USBF}(k\text{N}) + 0.84*\{\text{Rodpot}(\text{mm}) - 3.7*\text{USBF}(k\text{N})\} \\ &= 3.5*\text{USBF}(k\text{N}) + 0.84*\text{Rodpot}(\text{mm}) \end{aligned}$

Matlab script includes the following files : DEQ_2012_iso.m (main program) Cfcfilt.m Deter3db.m Chorax_lin_1c.m

It requires ISO files of
Rodpot deflection
Upper Shoulder Belt Force

Input

So files must have the following format:

File.iso

Name of the laboratory	: XXXXXX
Contact name of laboratory	:Data Adquisition
Contact phone of laboratory	:+11 111 111111
Contact fax of laboratory	:+11 111 111111
Name of customer	:EuroNCAP
Laboratory test ref. number	:000001XX
Customer test ref. number	:000001XX
Title	:EuroNCAP ODB Frontal
Medium No./number of media	:1/1
Type of the test	:EuroNCAP ODB Frontal
Date of the test	:2012-01-01
Number of test objects	:1
Name of test object 1	:Vehicle1
Velocity test object 1	:17.01
Mass test object 1	:1000.0
Sign convent./Instr.Standard:SAEJ211	
Number of channels	:94
Name of channel 001	:10000000000TI00
Name of channel 002	:11HEADOOOOH3ACXP
Name of channel 003	:11HEADOOOOH3ACYP
Name of channel 004	:11HEADOOOOH3ACZP
Name of channel 005	:11NECKUPOOH3FOXP
Name of channel 006	:11NECKUPOOH3FOYP
Name of channel 007	:11NECKUPOOH3FOZP
Name of channel 008	:11NECKUPOOH3MOXP
Name of channel 009	:11NECKUPOOH3MOYP
Name of channel 010	:11NECKUPOOH3MOZP
Name of channel 011	:11CHSTOOOOH3ACXP
Nows of shownel 012	.11CUETOOOOUS & CVD

File.001

Test object number	:01
Errors occurred	:NO
Name of the channel	:Driver Seat Belt
Laboratory channel code	:NOVALUE
Customer channel code	:NOVALUE
Channel code	:11SEBE0000B3FOXP
Unit	:N
Reference system	:Global
Transducer type	:DK11-11-11
Pre-filter type	:6 poles Butterworth, 4kHz
Cut off frequency	:4000.0
Channel amplitude class	:16000.000
Reference channel	:novalue
Reference channel name	:NOVALUE
Data source	:transducer
Data status	:ok
Sampling interval	:0.000050
Bit resolution	:16
Time of first sample	:-0.499000E-01
Number of samples	:9999
Comments	next 6 items for proofing:
First global maximum value	:+0.428300E+04
Time of maximum value	:+0.739500E-01
First global minimum value	:-0.350126E+02
Time of minimum value	:+0.225650E+00
Start offset interval	:-0.499000E-01
End offset interval	:+0.000000E+00
+0.124137E+01	
+0.124137E+01	
+0.124137E+01	
-0.633634E+00	
-0.125863E+01	

Rodpot deflection should be named:

- 11CHST0000H3Dxxx (for Driver)
- 13CHST0000H3Dxxx (for Passenger)
 - The unit may be "m" or "mm"

Upper shoulder belt force should be named:

- 11SEBExxxxxxxx (for Driver)
- 13SEBExxxxxxxx (for Passenger)
 - The unit may be "N" or "kN"

In case a driver and a passenger are present, the Deq will be calculated for both of them.

Calculations

For the belt deflection calculation

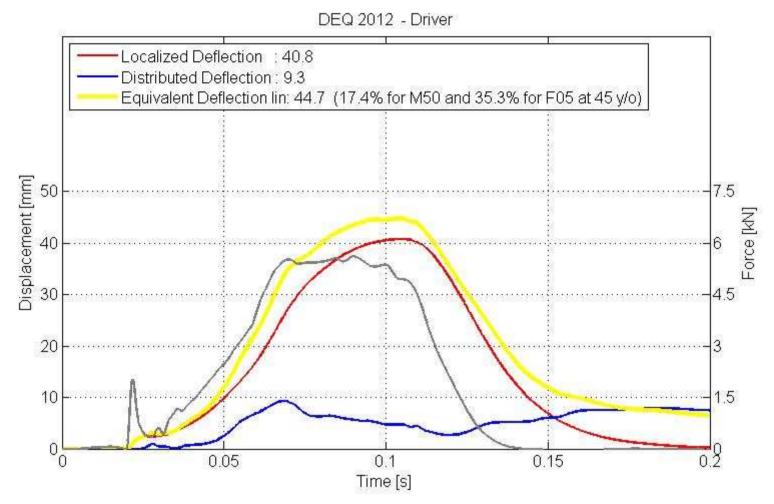
- the stiffness and damping are calculated as follow:
 - K k1 = 135.78 0.0018*Max_Upper_Shoulder_Belt_Force
 - C1 = 0.0185*k1 0.2357
- The belt deflection (Dbelt) is calculated by solving the differential equation
 - USBF = k1*Dbelt + c1*Dbelt'
- **F**or the airbag deflection calculation
 - **K** the initial stiffness and damping are calculated as follow:
 - ki = 238.14 0.0023* Max_Upper_Shoulder_Belt_Force
 - ci = 0.0185*k1-0.2357
 - **R** The belt deflection is calculated by solving the differential equation
 - USBF = ki*Dbelt + ci*Dbelt
 - The airbag deflection (Defl_airbag) is calculated by substracting the belt deflection from the rodpot deflection
 - Then the stiffness is increased until the difference between the localized calculated deflection and the measured sternal deflection is less than 5mm at any time.

DEQ is calculated as follows:

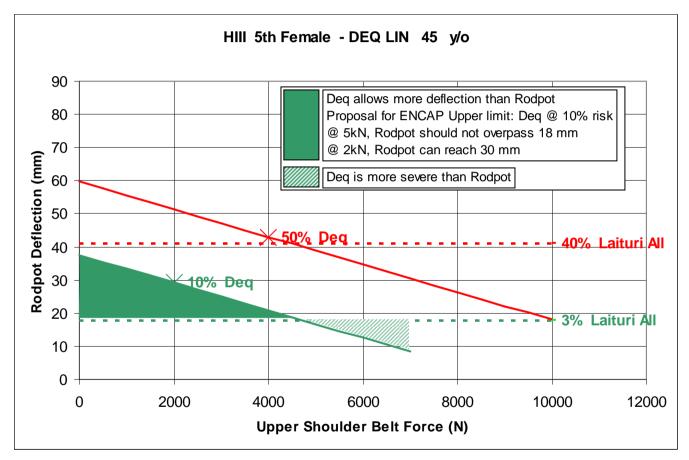
- DEQ LIN = Belt_deflection + (Fn*Defl_airbag)
- ♥ With Fn =0.84
- **C** The risks for M50 and F05 are calculated with the following formulas:
 - Risk DEQ M50 = (1-exp(-exp((log(DEQ_max)-intercept-fage*age)/scale)))*100
 - Risk DEQ F05 = (1-exp(-exp((log(DEQ_max/F05)-intercept-fage*age)/scale)))*100
 - ♥ With scale=0.246
 - intercept=4.9908
 - **fage=-0.0174**
 - **F**05=0.817

➡ HIII 50th Male

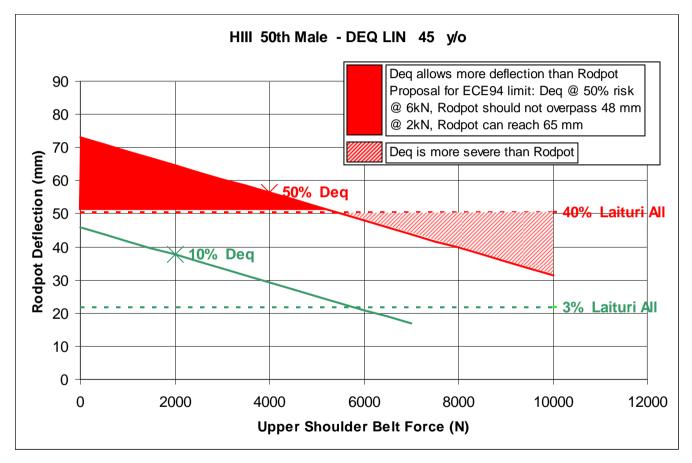
$$Injury \, risk(50th) = 1 - \exp\left(-\exp\left(\frac{\ln(deq) - 4.99 + 0.0174 * age}{0.246}\right)\right)$$


➡ HIII 5th Female

$$Injury\,risk(50th) = 1 - \exp\left(-\exp\left(\frac{\ln(deq/0.83) - 4.99 + 0.0174 * age}{0.246}\right)\right)$$


Output

Thresholds



HIII 5th - 45 y/o for **ENCAP** UPPER limit

Thresholds

HIII 50th - 45 y/o for **ECE94** limit and **ENCAP** LOWER limit

