WLTP-E-Lab Sub Group
Test procedure

Kazuki Kobayashi
NTSEL Japan
Phase I
(2009 ~ 2013)

- DHC
 (Worldwide Harmonized Light Duty Driving Cycle)
- DTP
 (Test Procedure)

Phase II
(2014 ~ 2018)

- Low ambient temperature / High Altitude test procedure
- Durability
- In Service Conformity

 decision made by WP29/AC3 before Phase II

Phase III
(2019 ~ 2021)

- Definition of Emission Limits
- Reference Fuel Specifications
- Correlation with existing regional cycles

Parallel Informal Groups

- OCE
 (Off-Cycle Requirement)
- MAC
 (Mobile Air Conditioning)

OBD

Other gtr
WLTP: Worldwide harmonized Light duty driving Test Procedure

Task of DHC Group Work
- Classification of Influencing Parameters
- Collections of In-use driving data
- Gearshift analysis
- Development of Reference Database
- Gearshift prescription
- Development of initial WLTC
 - Validation tests 1
 - Modification
 - Short trip & gearshift points
 - Validation tests 2
 - Confirmation tests
 - Modification
 - Short trip & gearshift points
 - WLTC

Task of DTP Group Work
- Collections of statistics on LD vehicles use
- Determine weighting factor
 - WLTC
 - Gearshift analysis
 - Gearshift prescription
- Development of Reference Database
 - Re-categorization into L/M/H
- Development of initial WLTC
 - Validation tests 1
 - Modification
 - Short trip & gearshift points
 - Validation tests 2
 - Confirmation tests
 - Modification
 - Short trip & gearshift points
 - WLTC

Remark
- DHC: Development of worldwide Harmonized light duty driving Cycle
- DTP: Development of Test Procedure
- WLTC: Worldwide harmonized Light duty driving Test Cycle

Today! April 2013
WLTP road map

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>WP.29</td>
<td>☆</td>
<td>☆</td>
<td>☆</td>
<td>☆</td>
</tr>
<tr>
<td>GRPE</td>
<td>☆</td>
<td>ad-hoc</td>
<td>☆</td>
<td>☆</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>☆</td>
<td>☆</td>
<td>☆</td>
<td>☆</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>10</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>10</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Phase I gtr

- **Level 1** (MUST items)
- **Level 2** (can be postponed to Phase II)

Propose Phase II work schedule

(ref.) work elements are listed on WP29-2009-131

However, no specific time schedule is described

Phase II gtr

(it is one of possibilities to divide into 2 stages based on work elements)
WLTC Ver 5.3 & 5.1

Low (589秒) (L3)

Middle (433秒) (M3)

High (455秒) (H3)

Ex-High (323秒) (ExH3)
Vehicle classification

Low power vehicle (less than PMR ≤ 34kW/t)
• Class 1: PMR ≤ 22 kW/t
• Class 2: 22 < PMR ≤ 34 kW/t
Electrified vehicle

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVC-HEV</td>
<td>off-vehicle charging hybrid electric vehicle</td>
</tr>
<tr>
<td>NOVC-HEV</td>
<td>not off-vehicle charging hybrid electric vehicle;</td>
</tr>
<tr>
<td>Pure electric vehicle (PEV)</td>
<td>a vehicle with a power train where all energy converters are electric machines and all storage systems are rechargeable storage systems (ReESS)</td>
</tr>
</tbody>
</table>
Vehicle Classification for Electrified vehicle

To be same as ICE vehicle

A power of OVC-HEV should be considered.
Motor power + ICE power
Motor power or ICE power
Hybrid system power?

To move on Confirmation test, No classification=>Class 3 all vehicle

Maximum speed

Japan proposed to use Maximum speed in R68.
Maximum speed means:
For electric vehicle, the highest average value of the speed, which the vehicle can maintain twice over distance of 1 km.
To move on Confirmation test, Based on R68
Charge depleting test

- Discharge < NEC (net energy change)
Charge sustaining test

Charge Sustaining Mode

Unknown RESS charge level

OVVC vehicle

NOVVC vehicle

Preconditioning

Soak Time > 12h

ICE 2 options

Charge Sustaining

Cold start of ICE

Test n (cold)

Test n (hot)

Driving cycle [\ell]

CO\textsubscript{2}-emissions CS

See CD Test (Step 2)

y %

x Wh/test

Break of criteria for Discharging Mode in case of PHEV testing:

- manufacturer’s requirement

Same break off criteria as for CD Mode: X Wh
Battery charging and soak condition

5.2.5.4. Battery charging and measuring electric energy consumption
The vehicle shall be connected to the mains within 120 minutes after the conclusion of the charge-sustaining Type I test. The energy measurement equipment placed between the mains socket and the vehicle charger shall measure the charge energy E and its duration. Charging stops when a fully charged battery is detected.

Soak condition

To be charged without forced cooling!

Battery temperature within criteria
5.2.4.5. Break-off criteria
5.2.4.5.1. The break-off criteria for the charge-depleting test is reached when the relative net energy change as shown in the equation below is less than \(X \) per cent.

\[
\text{Relative net energy change } [\%] = \frac{\text{NEC}}{\text{Cycle energy demand of the test vehicle}}
\]
RCB Compensation Factor for CO₂

RCB factor for each phase and whole test phases

<table>
<thead>
<tr>
<th>Phase</th>
<th>Compensation Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole phases (L ~ Ex-H)</td>
<td>measured</td>
</tr>
<tr>
<td>Each phase (L or M or H or Ex-H)</td>
<td>Apply whole phases factor (justification : ISO/TR 11955, also refer next page)</td>
</tr>
<tr>
<td>Specific combined phases (L ~ H, or others)</td>
<td></td>
</tr>
</tbody>
</table>

- RCB Compensation Factor for CO₂
- Preconditioning
 - LOW 589s
 - MIDDLE 433s
 - HIGH 455s
 - Ex-HIGH 323s
- Set SOC at several levels
- Overnight soak

Sampling

- LOW 589s
- MIDDLE 433s
- HIGH 455s
- Ex-HIGH 323s

Obtain CO₂ and RCB

Obtain RCB compensation factor for whole phases
RCB Compensation Factor (Validation2)

Horizontal unit
Ah → Ah/km
It is agreed to apply regional UFs at least for Phase I. The harmonization of the methodology seems to be difficult. Discussions to reach for a globally harmonized methodology and a globally harmonized UF will go on.
All electric range test for PEV

AER and AER(city) determination in case of (P)EV testing

\[\Delta E = E_{AC} \text{ (recharged Energy from the Grid)} \]

- Battery discharge according to manufacturers requirements
- Soak time and Battery charge
- All Electric Range AER / AERcity
- Max. 2hr
- 12h charge
- Test 1, Test i + 1, Test i + 2, Test i + 3
- Min SOC
- Driving cycle [/]
- Recharging time according to 5.3.2.5.6 and 5.3.2.6.6.

End of AER test criteria: according 5.3.2.5.4. and 5.3.2.6.4. of this annex
5.4.2.4.1.3. The end of the test occurs when the break-off criteria is reached.

The break-off criteria shall have been reached when the vehicle cannot follow the driving trace for 4 seconds or more.

The acceleration controller shall be deactivated. The vehicle shall be braked to a standstill within 60 seconds.
Japan proposed shortening test procedure based on SAE1634.

Shorten test procedure for WLTC MCT

1) To prevent uneven condition, number of Low/Middle should be several times.
2) Before CSCm and after CSCm should be same.

<table>
<thead>
<tr>
<th>Each phase</th>
<th>Low</th>
<th>Middle</th>
<th>High</th>
<th>Ex-High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.36</td>
<td>19.04</td>
<td>14.32</td>
<td>16.5</td>
<td>62.22 km</td>
</tr>
<tr>
<td>2356</td>
<td>1732</td>
<td>910</td>
<td>646</td>
<td></td>
<td>5644 sec</td>
</tr>
</tbody>
</table>

The distance exclude CSCm

- Low: 3.09 km (9 min 49 s)
- Middle: 4.76 km (7 min 13 s)
- High: 7.16 km (7 min 13 s)
- Ex-High: 8.25 km (5 min 23 s)
- Total: 62.22 km
- CSCM: 55 mph (89 km/h)
- CSCE: 55 mph (89 km/h)
Estimated Range with MCT

<table>
<thead>
<tr>
<th>Phase</th>
<th>Measured Range (SCT)</th>
<th>Estimated Range (MCT)</th>
<th>Comparison SCT vs MCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>177.1km</td>
<td>183.2km</td>
<td>6.1km 3.6%</td>
</tr>
<tr>
<td>Middle</td>
<td>170.1km</td>
<td>172.9km</td>
<td>2.8km 1.7%</td>
</tr>
<tr>
<td>High</td>
<td>147.3km</td>
<td>146.1km</td>
<td>1.2km 0.8%</td>
</tr>
<tr>
<td>Ex-High</td>
<td>98.5km</td>
<td>99.5km</td>
<td>1.0km 1.1%</td>
</tr>
</tbody>
</table>

The results show that the error was small. Thus, it is considered that the shorten test procedure with MCT is usable.

Time reduction effect with the shorten test procedure with MCT

The measurement of AER and AER city with **SCT** consumed **2days**.

The measurement of four ranges with **MCT** consumed **3:30**.
Thank you for your attention!