VULNERABLE ROAD USERS AWARENESS USING WIRELESS COMMUNICATION

Christian Ress
Technical Expert Connectivity
Global Driver Assistance & Active Safety
Ford Research & Advanced Engineering Europe

17.04.2013
AGENDA

- Connected Car Technology – V2X
 - Example V2X Application

- V2X for Vulnerable Road Users
 - KO-TAG research project
 - Japanese activities

- Summary & Outlook
Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication

- Connect vehicles to each other and to the infrastructure
- Use vehicles as a sensor to increase traffic safety and efficiency
- Provide foresighted information and warnings to the driver, even if out of sight
- Ad-hoc network using Wireless LAN
 - Reserved frequency spectrum at 5.9GHz
 - Communication technology available and standardised
 - IEEE 802.11p
 - ETSI ITS G5A (EU)
 - SAE J2735 (US)
V2X APPLICATIONS

- Wide area of applications using V2X communication:
 - Driver assistance and active safety
 - Driving efficiency and traffic management
 - Comfort functions, infotainment, health & wellness
- Low cost technology
- Democratize driver assistance features
- V2X deployment in Europe from CY2015 on expected
 - CAR 2 CAR Communication Consortium: MoU signed (OEMs, suppliers)
APPLICATION EXAMPLE: DRIVER ASSISTANCE

- Electronic Emergency Brake Light (EEBL)
V2X FOR VULNERABLE ROAD USERS (VRU)

Use V2X technology not only for vehicles but also for pedestrians, bicycles, etc.

- Cooperative sensor technology on the basis of transponder systems (active RFID tags)
- VRU users carry tags, e.g. integrated in school bags, helmets or mobile phones.
- Localization device in vehicle sends a query to transponders.
- Transponders respond on query with specific information.
- Localization devices conclude the type and relative position of other road users around them and calculate possible collision risks.
- Tags are located, clearly classified and tracked anonymously.
WIRELESS TRANSPONDERS

- Active RFID tag
- Transmit power: 20-100 mW
- Communication range \(\leq 200\text{m} \) (within urban area or at cross sections, communication ranges far below 200m are sufficient)
- Transmission rate 200 kbit/s (sufficient for communication only - no positioning)
- Latency: \(\leq 30\text{ ms} \)
- Requires power (battery or device integration)
Part of German government co-funded research initiative “KO-FAS”

- “Cooperative Sensor Systems and Cooperative Perception Systems for Preventive Road Safety”
- 4 year joint research project: 2009 – 2013
- Final Project presentation 18./19. September 2013, Aschaffenburg, Germany
- Web: http://www.kofas.de/

Sub-Project KO-TAG

- Research cooperative sensor technology on the basis of transponder systems
- Applications:
 - “Protection of vulnerable road users”
 - “Vehicle-vehicle-safety”
- Project partners:
University of Tokyo, 2009:
A person-to-vehicle communication system was developed for improving security and safety of On-demand bus by using cellular phones and vehicle-mounted devices.

- Exchange information between persons and vehicles via mobile network and wireless LAN
- Detect existence of pedestrians in situations where they are difficult to notice
- Give information support by employing the algorithm for estimating the collision risk
- Passengers inform their location to the driver in waiting for the bus and get information about the location and estimated arrival time of the bus.
- The effectiveness of the system in On-demand bus was successfully evaluated in Tokyo.

Our activity for future ITS (minimizing accident)

Background (motivation)

- Target number of death by traffic accident: less than 2,500 person @ 2018 (5,000 person @ 2010)
- Old person who didn’t ride car: 1,600 person @ 2010 (32%)
- Major target: Old person / Walking person / Bicycle

Human/bicycle to Vehicle wireless communication (Vehicle to Human/bicycle) is required.

Source: SANYO Electric Co. Ltd 2011
H2V technical roadmap (tentative)

<table>
<thead>
<tr>
<th>Year</th>
<th>Wireless Method</th>
<th>Mobile Devices</th>
<th>Car Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Wireless method (1) Required performance 5GHz can’t achieve requirement</td>
<td>Small antenna Small LSI</td>
<td>Decision technologies (1) Prevention technologies</td>
</tr>
<tr>
<td></td>
<td>(2) Co-existing with 12V/2V</td>
<td>Low power technologies</td>
<td>(2) User interface</td>
</tr>
<tr>
<td></td>
<td>New rule for H2V is required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Wireless method (1) Required performance 700MHz is old</td>
<td></td>
<td>Decision technologies (1) Prevention technologies</td>
</tr>
<tr>
<td></td>
<td>(2) Co-existing with 12V/2V Free time is utilized</td>
<td></td>
<td>(2) User interface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Large scale trial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Target 2013

ITS Tokyo Congress

Source: SANYO Electric Co. Ltd 2011
SUMMARY

- Vehicles of the future are expected to use vehicle-to-vehicle and vehicle-to-infrastructure (V2X) communication.
- V2X deployment expected from CY2015 on
- Cooperative systems potentially allow safer, more efficient and more comfortable driving.
 - Foresighted warning against hazardous situations, even if out of sight due to a bend or other vehicles ahead
 - Continuous updates about traffic jams, road works and detour recommendations to enhance trip planning
- Opportunity to use V2X communication also for Vulnerable Road Users
 - Use of active RFID tags
 - Inform both vehicle driver and other road users
 - Technology available for vehicles, ongoing efforts for “H2V” communication
 - Potential market introduction within this decade

Investigate opportunity to use communication-based systems also for electric vehicle notification!