Importance of Compression Frequency and Fluid Fill-Up Procedure in Pressure Cycling Test for Composite Vessel

> 2018. 6. 27 Sungmin Cho, Ph. D Hydrogen Energy Research Division Korea Gas Safety Corporation

1. Cycling Test Instruments in KGS

Ambient/Extreme Temperature Hydraulic Cycling Testers

Underground Pit

Remote Controllers

Key Features

한국가스안전공사

- CCTV surveillance
- Fully remote controlled by LabView
- Capacity : fluid supply up to 84 L/min at max. 110 & 55 MPa

2. Issues Raised...

HDPE Liner Damaged after Extreme Temperature Cycling Test(EC79)

3. Cycling Test Procedure by GTR No. 13

6.2.2.2. Pressure cycling test (hydraulic)

Air should be completely removed

The test is performed in accordance with the forming procedure:

(a) The container is filled with a non-corrosive fluid;

(b) The container and fluid are stabilized at the specified temperature and relative humidity at the start of testing; the environment, fuelling fluid and container skin are maintained at the specified temperature for the duration of the testing. The container temperature may vary from the environmental temperature during testing;

(c) The container is pressure cycled between 2 (± 1) MPa and the target pressure at a rate not exceeding 10 cycles per minute for the specified number of cycles;

(d) The temperature of the hydr <u>duid</u> within the container is Suggest no faster than maintained and m **2.5 cycles per minute**

d temperature.

4. Mechanism of Air Pocket Build-up

Key Features

가스안전공사

- Air can be injected by careless operators
- Air in upper dome part is not likely replaced by fluid
- Considerable amount of bubbles remain stuck to surface of vessel

5. Experimental Approach

Vessel dimensions

- High pressure vessel for CNG (Type3, AI-6061T6 liner)
- Working pressure 20.7 MPa, Capacity 106 L

Dimensions of Liner									
Material	AI6061T6								
Thickness	4 mm								
Length	600 mm								
O.D.	434 mm								
Dimensions of Composite Layer									
Material	Carbon fiber/Epoxy resin								
Thickness	12 mm								
O.D.	460 mm								

6. Experimental Approach

Air

fluid

Thermocouples

- 6 K-type TCs fixed at the tips of arms
- 2 measure temperature of air pocket
- 4 measure temperature of fluid (water)

Step 4. Fluid Cycling

Fluid Supplier

- Pressure Range 2 to 25.9 MPa
- Tap water is pumped
- **4cycles per minute**

Step 2. Insert TCs

Step 1. Fill water

up to 70 kg/106 kg

7. Results

Observations

- T_{water} gradually increases with cycles
- T_{air} repeats up and down as pressure cycles (-2 to 28°C)

8. Thermal Analysis I

Discussions

- Rate of heat transfer < Rate of compression-expansion cycle
- Plastic liner is exposed to thermal shock(~40°C) during test
- Temperature amplitude can further increase in full-length test (i.e., 12,000 cycles according to EC79)

9. Analysis II(to be conducted...)

	Classification		Sample #					Damage	
			1	2	3	4	5	Ratio	An example of result
	Frequ- ency (Cycles per minute)	1	0	0	0	0	0	0	from test series
		3	0	Х	0	0	0	0.2	
		5	Х	0	0	0	0	0.2	
		7	Х	0	0			Damaged vessels	after cycle test vs. compression frequency
		9	Х	Х	0		100%		
		11	Х	Х	Х		80%	: 📕	

Percentage

limit

Test series

To determine new limit for compression frequency (currently, no more than 0% 10 cycles) per minute Suggested

Compression frequency (cycles per minute)

5

3

1

Undamaged Damaged

7

9

11

Current

Criterion

10. Suggestions

Amendment of GTR No. 13

 6.2.2.2 (a-1) "Air should be removed from test vessel by one of the following de-gassing pressures"

Air

Air Air

met=

- 6.2.2.2 (a-1-1) "For y be applied at least 1
- 6.2.2.2 (a-1-1) "For can be applied to tes
 5 minutes. Vacuum r

Round-robin tests

- To build up reliability frequencies and number
- To save time and cost to prove e data sets

Thank you for your attentions

Inquiry, Question, Collaboration

E-mail: cho225@kgs.or.kr

