The European Commission's science and knowledge service

Joint Research Centre

Progress on thermal propagation testing

Akos Kriston, Andreas Pfrang, Vanesa Ruiz, Ibtissam Adanouj, Theodora Kosmidou, Franco Di Persio, Marek Bielewski, Emilio Napolitano, Lois Brett

September 2018

Outline

• Thermal propagation testing in standards

- JRC experimental TP activity
- Screening test of initiation methods

- Simulation of thermal runaway uncertainty
- Estimation of thermal runaway probability

Thermal propagation testing in standards

Scope:

- Review of existing standards in various applications
- Analysis of gaps and fitness for purpose
- On-going standardisation efforts

Outline

• Thermal propagation testing in standards

- JRC experimental TP activity
- Screening test of initiation methods

- Simulation of thermal runaway uncertainty
- Estimation of thermal runaway probability

JRC experimental TP activity

Cell & material

Comparison of initiation techniques

- Trigger energy/ energy release
- Repeatability
 - + ARC, DSC

Narrow down init. methods

Short stack

<u>Analyse influential factors on the outcome</u>

- Temperature, SOC...
- Cell configuration
- Spark source

Module

Evaluate repeatability, reproducibility

- Check proposed test descriptions (also with testing bodies)
- Round robin tests
- Define pass/fail criteria

Pack, Vehicle

<u>Verification and finalization of</u> method

- Round robin tests
- Practical aspects
- Define robust evaluation methods (e.g. gas analysis)

Refine test description

Select equivalent test(s)

Screening test of initiation methods

- Initiation methods (4+): Heating, Nail, Rapid heating (Canada), Ceramic nail (IEC TR 62660-4)
- Battery type (4): all graphite/NMC: 21700 4 Ah, BEV 96
 Ah, Pouch 39 Ah, Pouch 56 Ah
- Assess impact of un-defined/poorly-defined testing conditions

Monitor: cell surface temperature, voltage evolution (drop), heating rate, venting (y/n) and occurrence of TR (y/n)

General test matrix

Initiation method	Automotive battery type				
	21700 4 Ah	BEV 96 Ah	Pouch 39 Ah	Pouch 56 Ah	Grand Total
4.1 - Heating	3	3	3	3	12
4.2 - Nail	3	3	3	3	12
4.3 - Ceramic	3	3	3	3	12
4.4 - Rapid heating	3	3	3	3	12
Grand Total	12	12	12	12	48

12 further tests have been purchased replacing overcharge tests, but the testing plan has not been

defined yet

Execution of tests

Initiation level tests to be performed at ZSW, Ulm
 October 2018 to January 2019

Procurement of stack-level TP testing has started

Outline

• Thermal propagation testing in standards

- JRC experimental TP activity
- Screening test of initiation methods

- Simulation of thermal runaway uncertainty
- Estimation of thermal runaway probability

Simulation of thermal runaway uncertainty

System analysis

- Determine governing equations, factors
- Create invariants by dimensional analysis

Uncertainty
/ severity
analysis

- Vary independent variables
- Estimate severity of TR

Sensitivity analysis

- Determine the most influential factors and their interactions
- ANOVA, SOBOL Random forest etc.

Survival probability

- Nominal logistic
- Weibull or other

Governing equations

$$Q_{cell} = Q_{trigger} + \Sigma Q_{chemical} + Q_{electrical} - Q_{cooling}$$

$$m_{cell}C_p \frac{dT}{dt}$$

$$R_i = \frac{\mathrm{d}x_i}{\mathrm{d}t} = -A_i x_i \mathrm{exp} \left(-\frac{E_i}{k_B T} \right)$$

$$A_{surf} \left[\varepsilon \cdot \sigma \left(T_{cell}^4 - T_{amb}^4 \right) + h_{conv} \left(T_{cell} - T_{amb} \right) \right]$$

Introducing new independent factors, e.g.:

- Resistance ratio (R_{ext}/R_{int})
- Surface to volume ratio

Simplified model to assess uncertainty

tree, Sobol indexes

- What are the most important parameters?
- Is TR sensitive to trigger energy?
- What is the expected uncertainty of TR?
- What is the probability of TR?

Uncertainty analysis

Severity analysis

Commission

Global sensitivity analysis

What are the most important factors?

Most significant factors:

- Surface to volume ratio
- 2. Resistance ratio (R_{ext}/R_{int})
- 3. SEI decomposition reaction heat

No evidence is found that the trigger energy has significant effect within the considered parameter uncertainty

Note: It's effect can be more complex/non-linear, though.

Estimation of failure probability of TR

Summary, findings

- The most important design factors: surface to volume ratio and heat of SEI decomposition
- The most important test factor (i.e. controllable): resistance ratio (R_{ext}/R_{int})
- TR probability very sensitive to variation of resistance ratio
- Hard short (<1) results in TR with high probability irrespective of other parameters
- Tests in soft short region are stochastic in nature and requires more replications

Acknowledgement BATTEST group

Franco Di Persio Ricardo Da Costa Barata Denis Dams

Natalia Lebedeva Emilio Napolitano Ibtissam Adanouj Lois Brett

Andreas Pfrang Marek Bielewski Vanesa Ruiz Theodora Kosmidou Akos Kriston

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: **EU Science Hub - Joint Research Centre**

LinkedIn: Joint Research Centre

YouTube: **EU Science Hub**

