16th EVS GTR

EV Li-ion Battery Caused Toxics and Analysis

September 2018

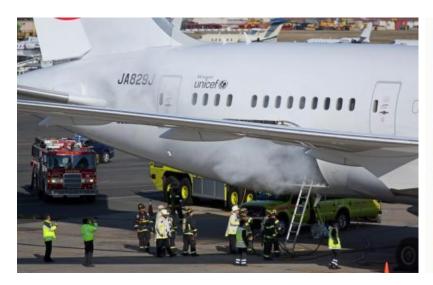
Contents

1 Li-ion Battery toxics risk always exists

2 Our Works and advice about Li-ion Battery toxics

2.1 Database and classification of Li-ion Battery Thermal Runaway toxics

2.2 To test and monitor the EV toxic gases is very necessary


2.3 Occurrence scenes of EV Li-ion battery toxic leakage

2.4 Standard methods to test Li-ion Battery Thermal Runaway toxics

2.5 Advice to EV Li-ion Battery toxics inspection items

1 Li-ion Battery toxics threat always exists

An improved understanding and control of the Li-ion battery safety, development and induced thermal and chemical threat is actually needed.

With CO_x, HF, PO_x and toxic VOCs and Dense smoke

1 Li-ion Battery toxics threat always exists

With electrolyte Volatilization and toxic VOCs in the car carriage

Level	GB5044			GBZ230					WHO/IPCS		
	inhalation	via skin	via mouth	Inhalation			via skin	via mouth	via mouth	via skin	Inhalation
	LC50	LD50	LD50	Gas	Vapor	Mog					
	mg/m³	mg/kg	mg/kg	cm³/m³	mg/m³	mg/m³	mg/kg	mg/kg	mg/kg	mg/kg	mg/m³,4h
I/Very Toxic	< 200	< 100	< 25	< 100	< 500	< 50	<5	< 50	< 25	< 50	< 500
II/Highly Toxic	200~2000	100~500	25 ~ 500	100 ~ 500	500 ~ 2000	50~500	5~50	50 ~ 200			
III/Toxic	2000~20000	500~2500	500~5000	500 ~ 2500	2000 ~ 10000	500~1000	50~300	200~1000	25 ~ 200	50~400	500~2000
IV/Harmful									200~2000	400 ~ 2000	2000~20000
V/Low Toxic	> 20000	> 2500	> 5000	2500 ~ 20000	10000~20000	1000~5000	300~2000	1000 ~ 2000			
VI/Few Toxic			_	> 20000	> 20000	> 5000	> 2000	> 2000			

Six levels classification including I (very toxic), II (highly toxic), III (toxic), IV (harmful) and V (low toxic) and VI (Few Toxic) level was defined.

According to:

GB5044-1985: Classification of health hazard levels from occupational exposure to toxic substances,

GBZ230-2010: Classification for hazards of occupational exposure to toxicant,

WHO/IPCS: The User's Manual for the IPCS Health and Safety Guides.

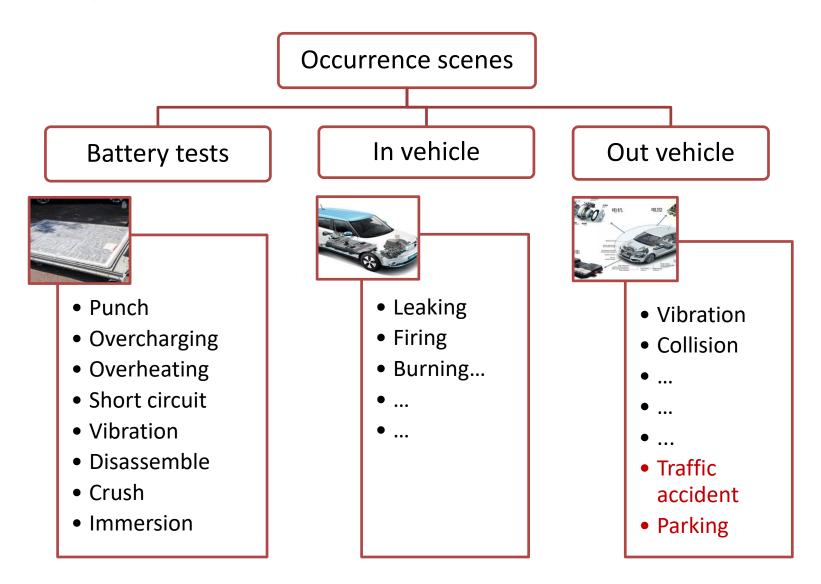
J Sun, JG Li, T Zhou, K Yang, H Li, X P Qiu, L Q Chen, Nano Energy, 2016.7

2.1.2 Database of Li-ion Battery Thermal Runaway Organic toxics

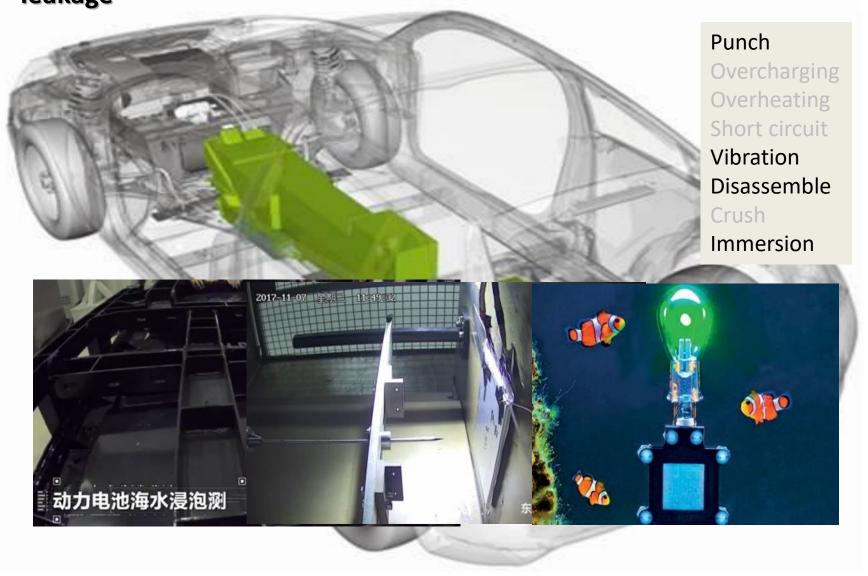
No.	Compound	CAS	Toxity grading	LCB	LMB	NMC	LPB
1	2-Propenal (C ₃ H ₄ O)	107-02-8	rank poison	0%, 150%	50%	0%,50%	50%
2	Propanedinitrile (C ₃ H ₂ N ₂)	109-77-3	rank poison			100%	
3	Propanenitrile (C ₃ H ₅ N)	107-12-0	rank poison			100%	
4	Naphthalene (C ₁₀ H ₈)	91-20-3	high toxic	50%,100%,150%		0%,100%,150%	
5	Carbonyl sulfide (COS)	463-58-1	high toxic		0%		
6	Butane, 1-isocyanato- (C ₅ H ₉ NO)	111-36-4	high toxic		50%, 100%	100%	
7	Oxirane, ethyl- (C ₄ H ₈ O)	106-88-7	high toxic	50%, 100%	50%,100%		
8	1,3-Pentadiene (C ₅ H ₈)	504-60-9	high toxic	50%, 100%			
9	1-Butanamine (C ₄ H ₁₁ N)	109-73-9	high toxic				0%
10	1,3-Cyclopentadiene (C ₅ H ₆)	542-92-7	high toxic	100%, 50%	100%	100%,150%	
11	2-methyl-2-Propanamine $(C_4H_{11}N)$	75-64-9	high toxic	0%, 150%	100%		100%
12	Propyleneoxide (C ₃ H ₆ O)	75-56-9	high toxic	0%, 150%			
13	Sulfur dioxide (SO ₂)	7446/9/5	high toxic				150%
14	2-Butene (C ₄ H ₈)	107-01-7	medium toxic	50%, 100%		50%, 150%	100%
15	1,4-Dioxane (C ₄ H ₈ O ₂)	123-91-1	medium toxic				150%
16	Benzene(C ₆ H ₆)	71-43-2	medium toxic	0%,50%,100%, 150%	0%,50%,100%, 150%	0%,50%,100%, 150%	50%,100%

J Sun, JG Li, T Zhou, K Yang, H Li, X P Qiu, L Q Chen, Nano Energy, 2016.7

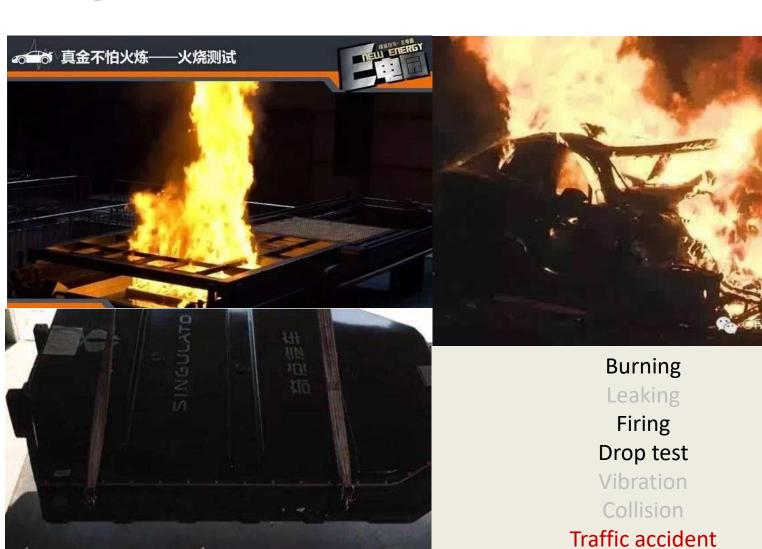
2.1.3 The toxics concerntrations changing tendency of 100% SOC NMC LIBs combustion


J Sun, JG Li, T Zhou, K Yang, H Li, X P Qiu, L Q Chen, Nano Energy, 2016.7

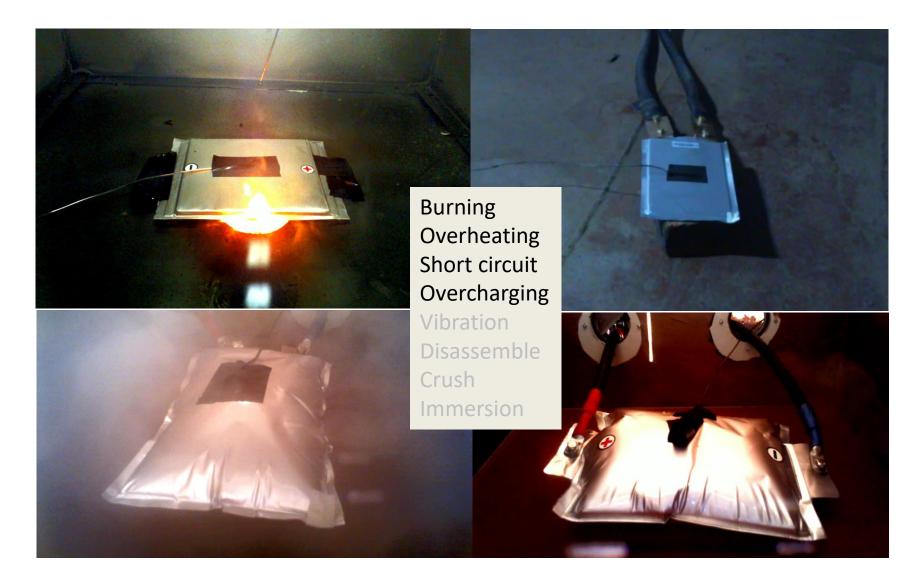
2.2 To test and monitor the EV toxic gases is very necessary


- Add examinations items of the toxic VOC in EV carriage.
- Add examinations of the toxic gases leaked from EV battery caused by Liion battery thermal runaway.
- Need new designation or criterion to test the toxic gases leaked form the EV battery in normal state and un-normal state.
- Need relative alarm and protective apparatus for EV.

We need pay more attention and support to this area!


2.3.1 Occurrence scenes of Li-ion battery Thermal Runaway toxic leakage

2.3.2 Occurrence scenes of Li-ion battery Thermal Runaway toxic leakage



2.3.3 Occurrence scenes of Li-ion battery Thermal Runaway toxic leakage

Parking

2.3.4 Occurrence scenes of Li-ion battery Thermal Runaway toxic leakage

2.3.5 Occurrence scenes of Li-ion battery Thermal Runaway toxic leakage

Burning

Overheating

Short circuit

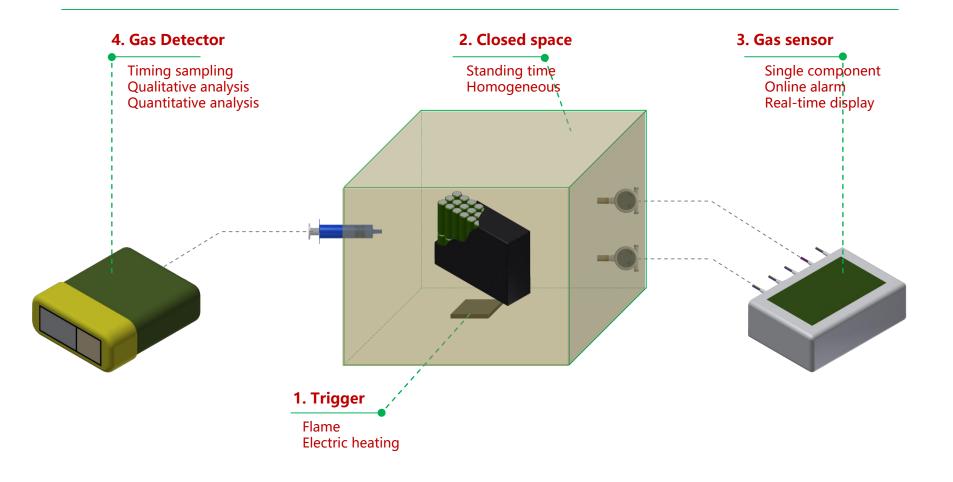
Overcharging

Vibration

Disassemble

Crush

Immersion


Electrolyte Volatilization in the car carriage?

It is easy to design the experimental: two normal working conditions, parking and driving,

to test the components of air in the car in different time quantum.

2.4 Standard methods to test Li-ion Battery Thermal Runaway toxic gases

Pack Test

- 2.5 We advice to add EV Li-ion Battery toxics inspection
 - Add examinations items of the toxic VOC in EV carriage
 - Add cell toxics test to all the scenes of the possibility of thermal runaway
 - Add pack toxics test to all the scenes of the possibility of thermal runaway
 - The toxic gases need to limit type (Flammability, toxicity, corrosiveness) and concentration
 - The limited concentration should according to GBZ230-2010,WHO/IPCS, and the real test value.
 - Database and classification of Li-ion Battery Thermal Runaway toxics need to supplement and unify.

Thanks for your attention!