

AEB Car-Car and Pedestrian: Last Point To Steer For Various Cars and Speeds

Dr. Patrick Seiniger, Federal Highway Research Institute (BASt)

Recap:

Last Point to Steer (Theory)

Goals and Methodology

- <u>Car-Car AEB</u>: Automatic braking is justified <u>at the latest</u> when avoidance by steering is not possible
 - Last Point To Steer (highly dependend on speed)
 - Last Time To Steer (in theory independent from speed)
- Goal: Identify last time to steer
 - As function of driving speed (is it really independent?)
 - As function of vehicle
- Subjective Tests
 - Cars instrumented with DGPS only
 - VW Passat 2011 (20, 30, 40, 50 km/h)
 - Mercedes GLC 2017 (50 km/h)
 - Alfa Romeo Mito 2010 (50 km/h)
 - All tests performed by drivers with ATP License B
- Additional Objective Tests
 - Fully instrumented driving robot in Mercedes GLC 2017
 - Programmed lane change
 - Measurement of steering and tire response time

Subjective Tests - Concept

- Task: full lane change as quick as possible
- Lane change width 2 m
- preferably with overshoot less than 3 m (of reference)
- Manual speed control (CC if possible)
- Reference point:
 front right corner of car
- Result: Time needed to reach a lateral shift of 2m for the front right corner (NOT for whole car!)

Results - VW Passat 2011

Results – Different Cars at 50 km/h

Results – Subjective Tests

- · Last time to steer decreases slightly with speed
- Last time to steer seems to increase with vehicle mass
- Subjective Tests only give results from yaw rate = 1°/s
- Response from 1° steering angle to 1°/s yaw from objective tests
- Theoretical level (10 m/s², 2m) is never reached

	Last time to steer				Last distance to steer			
	Passat	GLC	Mito	Theory	Passat	GLC	Mito	Theory
20 km/h	0.88 s	-	-	0.63 s	4.89 m	-	-	3.5 m
30 km/h	0.78 s	-	-	0.63 s	6.5 m	-	-	5.25 m
40 km/h	0.68 s	-	-	0.63 s	7.56 m	-	-	7 m
50 km/h	0.67 s	0.77 s	0.69 s	0.63 s	9.31 m	10.69m	9.58 m	8.75 m

Table does not include response time!

Objective Tests

Task: Robot programmed for lane change maneuver 0.9/1.0/1.1 s Lane change width: 2m Robot peak torque: 15 Nm (ABD SR15+CBAR Robot System)

Evaluation:

9 Steering Rate > $10^{\circ}/s \rightarrow y > 2m$ (new)

Results – Objective Tests

Results and Discussion – Last Time To Steer

• The following values have been identified as limits for last point to steer for various speeds and cars

Last distance to steer

	Passat	GLC	Mito	Theory	Passat	GLC	Mito	Theory
20 km/h	0.99 s	-	-	0.74 s	5.5 m	-	-	4.11 m
30 km/h	0.89 s	-	-	0.74 s	7.42 m	-	-	6.17 m
40 km/h	0.79 s	-	-	0.74 s	8.78 m	-	-	8.22 m
50 km/h	0.78 s	0.88 s	0.8 s	0.74 s	10.83m	12.22m	11.11 m	10.28m

Table does include 0.11s response time!

- These limits have been measured as "best case" for trained drivers
- Judge for yourselves whether these values are representative for "planned behavior" in regular traffic situations:

Last time to steer

German Position wrt Last Point To Steer

- "Last Point To Steer" avoidance is considered as part of a planned maneuver.
- An AEBS incorporating the "Last Point To Steer" concept should not require drivers to perform an ermergency avoidance maneuver in order to avoid an accident.
- "Last Point To Steer" should be kept at a total of 0.9 seconds despite that trained drivers in optimal conditions are able to achieve a full collision avoidance by steering up to a total of 0.78s.
- The resulting requirement of at least avoidance up to 42 km/h (relative speed) should still be maintained.

AEBS Pedestrian – Performance Req's

- Method to derive performance requirements for AEB-Car: Braking as soon as last point to steer has been passed is acceptable under certain conditions (see previous slide).
- This method is not acceptable for Pedestrian AEBS, since it effectively means that drivers should be given the chance to approach a pedestrian with high speed and steer at the last possible moment, see next slide for a comparison.
- <u>Germany presented the "pedestrian-enters-path"-criterion in</u> <u>AEBS-03-04, which is much more appropriate to describe</u> <u>pedestrian situations.</u> A "first time/point to brake" can be derived from this method as well.
- Germany proposes to derive necessary speed reductions, also for those speeds where a full avoidance is physically not possible (e.g. higher speeds than the peak avoidance speed).

Comparison: Critical-Area-Approach vs. LPS

Speed Reduction Requirements – 0.9 and 0.72s Brake Timing

Federal Ministry of Transport and Digital Infrastructure

Brake when ped. is 30 cm from path

TTC 0.9s

Brake when ped. enters path

TTC 0.72s

Deaction of AEBS-M1 – German Position

- <u>Manual</u> deactivation of AEBS function is <u>not acceptable</u> for Germany
- An <u>automatic</u> activation/deactivation in specific situations is acceptable (e.g. those named at AEBS-04)
- However, sensor misalignment should rather be targeted by AEBS self-tests which are – by the state of the art – required for any given safety-critical function at startup!
- AEBS dectivation in offroad use is possible by
 - E.g. evaluating vehicle gearbox and AWD status or
 - E.g. evaluating vehicle chassis status, e.g. largely different wheel displacement at or between axles or ...
- <u>Towing</u> with rope and engine running can be detected as prolonged driving in neutral gear with unexplicable wheel speeds
- <u>Dynamometer</u> can be detected by wheel acceleration without body acceleration
- ...

17

There is no technological need for manual deactivation

