AEB Car-Car and Pedestrian: Last Point To Steer
 For Various Cars and Speeds

Dr. Patrick Seiniger,
Federal Highway Research Institute (BASt)

Goals and Methodology

- Car-Car AEB: Automatic braking is justified at the latest when avoidance by steering is not possible
- Last Point To Steer (highly dependend on speed)
- Last Time To Steer (in theory independent from speed)
- Goal: Identify last time to steer
- As function of driving speed (is it really independent?)
- As function of vehicle
- Subjective Tests
- Cars instrumented with DGPS only
- VW Passat 2011 (20, 30, 40, 50 km/h)
- Mercedes GLC 2017 (50 km/h)
- Alfa Romeo Mito 2010 (50 km/h)
- All tests performed by drivers with ATP License B
- Additional Objective Tests
- Fully instrumented driving robot in Mercedes GLC 2017
- Programmed lane change
- Measurement of steering and tire response time

Subjective Tests - Concept

- Task: full lane change as quick as possible
- Lane change width 2 m
- preferably with overshoot less than 3 m (of reference)
- Manual speed control (CC if possible)
- Reference point: front right corner of car
- Result: Time needed to reach a lateral shift of 2 m for the front right corner (NOT for whole car!)

Results - VW Passat 2011

Results - Different Cars at $50 \mathrm{~km} / \mathrm{h}$

Results - Subjective Tests

- Last time to steer decreases slightly with speed
- Last time to steer seems to increase with vehicle mass
- Subjective Tests only give results from yaw rate $=1 \%$ s
- Response from 1° steering angle to $1^{\circ} /$ s yaw from objective tests
- Theoretical level $\left(10 \mathrm{~m} / \mathrm{s}^{2}, 2 \mathrm{~m}\right)$ is never reached

Last time to steer				Last distance to steer				
	Passat	GLC	Mito	Theory	Passat	GLC	Mito	Theory
$20 \mathrm{~km} / \mathrm{h}$	0.88 s	-	-	0.63 s	4.89 m	-	-	3.5 m
$30 \mathrm{~km} / \mathrm{h}$	0.78 s	-	-	0.63 s	6.5 m	-	-	5.25 m
$40 \mathrm{~km} / \mathrm{h}$	0.68 s	-	-	0.63 s	7.56 m	-	-	7 m
$50 \mathrm{~km} / \mathrm{h}$	0.67 s	0.77 s	0.69 s	0.63 s	9.31 m	10.69 m	9.58 m	8.75 m

Table does not include response time!

Objective Tests

Task: Robot programmed for lane change maneuver 0.9/1.0/1.1 s Lane change width: 2 m
Robot peak torque: 15 Nm (ABD SR15+CBAR Robot System)

Evaluation:

9 Steering Rate $>10 \%$ s $\rightarrow \mathrm{y}>2 \mathrm{~m}$ (new)

Results - Objective Tests

Results and Discussion - Last Time To Steer

- The following values have been identified as limits for last point to steer for various speeds and cars

Last time to steer								
	Passat	GLC	Mito	Theory	Passat	GLC	Mito	Theory
$20 \mathrm{~km} / \mathrm{h}$	0.99 s	-	-	0.74 s	5.5 m	-	-	4.11 m
$30 \mathrm{~km} / \mathrm{h}$	0.89 s	-	-	0.74 s	7.42 m	-	-	6.17 m
$40 \mathrm{~km} / \mathrm{h}$	0.79 s	-	-	0.74 s	8.78 m	-	-	8.22 m
$50 \mathrm{~km} / \mathrm{h}$	0.78 s	0.88 s	0.8 s	0.74 s	10.83 m	12.22 m	11.11 m	10.28 m

Table does include 0.11s response time!

- These limits have been measured as „best case" for trained drivers
- Judge for yourselves whether these values are representative for "planned behavior" in regular traffic situations:

Federal Ministry
of Transport and
Digital Infrastructure
Videos
passat_20_088.MP4

German Position wrt Last Point To Steer

- "Last Point To Steer" avoidance is considered as part of a planned maneuver.
- An AEBS incorporating the „Last Point To Steer" concept should not require drivers to perform an ermergency avoidance maneuver in order to avoid an accident.
- „Last Point To Steer" should be kept at a total of 0.9 seconds despite that trained drivers in optimal conditions are able to achieve a full collision avoidance by steering up to a total of 0.78 s .
- The resulting requirement of at least avoidance up to $42 \mathrm{~km} / \mathrm{h}$ (relative speed) should still be maintained.

AEBS Pedestrian - Performance Req's

- Method to derive performance requirements for AEB-Car: Braking as soon as last point to steer has been passed is acceptable under certain conditions (see previous slide).
- This method is not acceptable for Pedestrian AEBS, since it effectively means that drivers should be given the chance to approach a pedestrian with high speed and steer at the last possible moment, see next slide for a comparison.
- Germany presented the "pedestrian-enters-path"-criterion in AEBS-03-04, which is much more appropriate to describe pedestrian situations. A „first time/point to brake" can be derived from this method as well.
- Germany proposes to derive necessary speed reductions, also for those speeds where a full avoidance is physically not possible (e.g. higher speeds than the peak avoidance speed).

Comparison: Critical-Area-Approach vs. LPS

Speed Reduction Requirements -

Federal Ministry of Transport and Digital Infrastructure

Brake when ped. is 30 cm from path

TTC 0.9s

Brake when ped. enters path

TTC 0.72s
0.9 and 0.72 s Brake Timing

Deaction of AEBS-M1 - German Position

- Manual deactivation of AEBS function is not acceptable for Germany
- An automatic activation/deactivation in specific situations is acceptable (e.g. those named at AEBS-04)
- However, sensor misalignment should rather be targeted by AEBS self-tests which are - by the state of the art - required for any given safety-critical function at startup!
- AEBS dectivation in offroad use is possible by
- E.g. evaluating vehicle gearbox and AWD status or
- E.g. evaluating vehicle chassis status, e.g. largely different wheel displacement at or between axles or ...
- Towing with rope and engine running can be detected as prolonged driving in neutral gear with unexplicable wheel speeds
- Dynamometer can be detected by wheel acceleration without body acceleration
- ...
- There is no technological need for manual deactivation

