

BUS FIRE SAFETY

2018-01-29

Michael Försth

RISE Research Institutes of Sweden

Fire Research

Three have become one - RISE

The RISE institutes Innventia, SP and Swedish ICT have merged in order to become a stronger research and innovation partner for businesses and society.

Facts about RISE

■ 2016 RISE had a turnover of just ≈ 250 MEuro

2 200 employees, 30 % with a PhD

RISE Fire Research

• Staff: About 165 comprising 4 professors, 21 PhD:s, 10 PhD students, MSc:s, engineers and administrative personnel

Sweden (Borås laboratory)

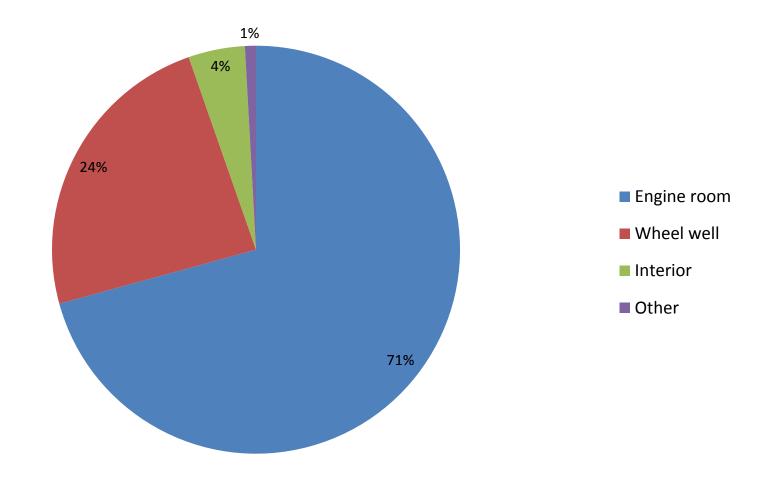
Norway (Trondheim)

Outline

- Bus fires background
- Recent fire safety development
 - Interior materials
 - Fire suppression
 - Fire detection
 - Prevention/Safety management
- Ideas for further development
 - Toxicity
 - Fire detection
 - Protection of energy storage

Outline

- Bus fires background
- Recent fire safety development
 - Interior materials
 - Fire suppression
 - Fire detection
 - Prevention/Safety management
- Ideas for further development
 - Toxicity
 - Fire detection
 - Protection of energy storage



In Sweden fires are reported for 1% of buses annually, and 10% of all buses are involved in a fire during their service life.

This means that, in percentage, about 5-10 times as many buses catch fire as do heavy goods vehicles.

Start of bus fires 2005-2013 in Sweden, known cases

Before 2004:

Approximately six to seven complete burnouts of buses each year in Sweden due to fires that started in the engine compartment.

2004:

Swedish insurance companies requested that all buses should be equipped with an approved fire suppression system in the engine compartment.

2004-2012:

No complete burnouts of buses due to such fires

Regulations and legislation works!

24.01.2018

BUS FIRE SAFETY - INTERIOR MATERIALS

Anja Hofmann-Böllinghaus

www.bam.de

Fire causes

Fire origin: in 80 % the engine area

Bildquelle: dpa (2009)

Electrical failure

Bildquelle: DEKRA (2010)

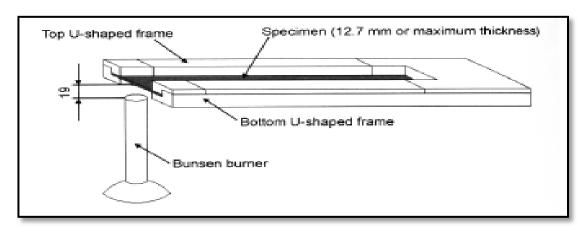
Bildquelle: NIST (2007)

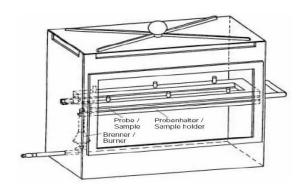
Wheels

BAM Materialforschung

und -prüfung

Statistics


- Bus fires in Germany:
 - every second/third day (own web search)
 - 161 fires in 2009 in busses with insurance (GDV)
 - app. 350 400 Busse per year (PUPA 2010)


- Sweden: 80 busses (Swedish Transport Agency)
 - USA: 0,8% per 100.000 busses (GBH International)
- internal investigation of a German bus association: 1 % of the busses per year

Fire safety standards

- Fire safety for buses: EU guideline 95/28/EG
- Fire tests: FMVSS 302
- Worldwide harmonized standard
- FMVSS 302 was developed in the 1960ties

- •ISO 3795 (International)
- •DIN 75200 (Germany)
- •ST 18-502 (France)
- •BS AU 169 (UK)
- •JIS D 1201 (Japan)
- •GS 97038 (BMW)
- •DBL 5307 (Daimler)
- •FLTM-BN 24-2 (Ford)
- •GM 6090 M (GM)
- •MES DF 050D (Mazda)
- •ES-X60410 (Mitsubishi)
- •PTL 8501 (Porsche)
- •D45 1333; (Renault)
- •STD 5031,1 (Volvo)
- •TL 1010 (VW)

Operation conditions

Operation conditions of buses and trains are widely comparable

Bus interior materials were tested according to CEN/TS 45545-2

Coaches and long distance trains

City buses and trams

Post-collision fires

- In U.S.A. 31 vehicle fires are reported per hour and these are responsible for around 300 deaths. These fires are involved in 12 % of fire deaths.
- Trends indicate that the survivable collision energy will continue to increase and, at the same time, the probability of post-crash fires rises with the collision energy
- As crashes are expected to become more survivable with advanced technology, fire events might become even more relevant

Outline

- Bus fires background
- Recent fire safety development
 - Interior materials
 - Fire suppression
 - Fire detection
 - Prevention/Safety management
- Ideas for further development
 - Toxicity
 - Fire detection
 - Protection of energy storage

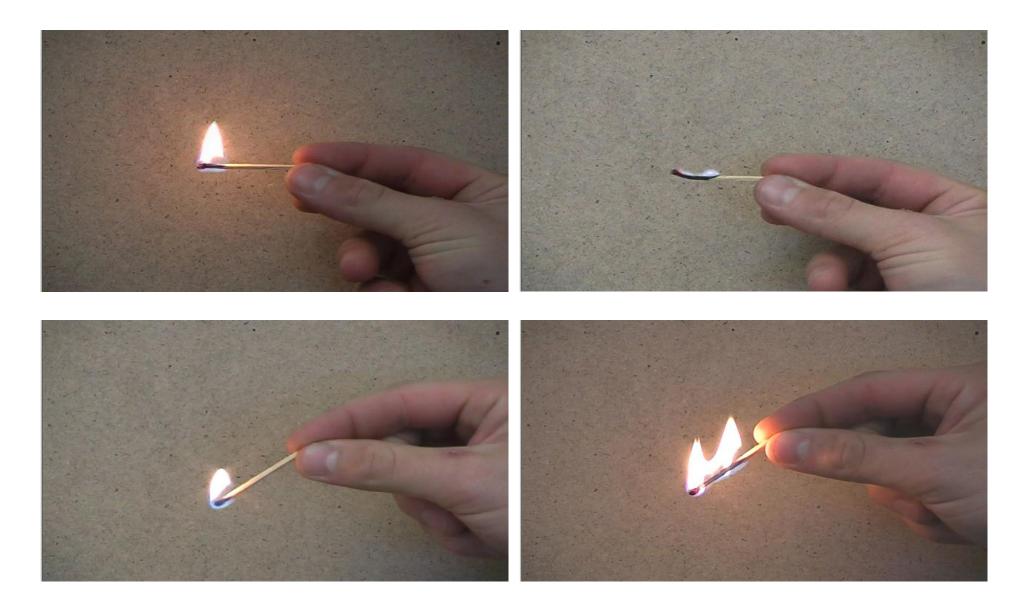
Ensuring fire safety in buses

Michael Försth,

Asbjørn Hagerupsen, Jan Petzäll

Statens vegvesen

Problem: Regulation No. 118 – burning rate test


- (See documents GRSG 94-33, 94-17, 93-15, 92-18, 91-19, 90-32, 90-16, 89-33, 89-23, and 88-21)
- Test of horizontal flame spread (ISO 3795, FMVSS 302)

• The test only considers horizontal flame propagation, and contains additional technical shortcomings such as interrupted combustion when test object burns too fast and falls apart.

Are matches fire safe?

Solution: Proposed fire tests for Reg. No. 118

- Use of four established ISO/CEN tests, applied world-wide:
 - 1. Flame spread for surface linings
 - 2. Flame spread for floorings
 - 3. Test for production of smoke and toxic gases
 - 4. Measurement of heat release from a seat

- These are established test methods in transportation (e.g. trains EN 45545-2)
- ► → Complying materials exist on the market

1. Proposed alternative test for Flame Spread

• Flame spread test for surface linings

Criterion for trains: Critical Flux at Extinguishment ≥ 20 kW/m2

2. Proposed alternative test for Flame Spread

European harmonised flooring test

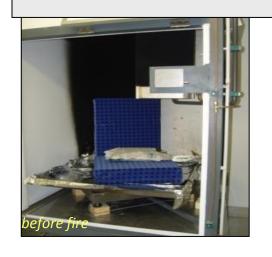
• Criterion: Critical Heat Flux at extinguishment $\geq 6 \text{ kW/m}^2$. Same as for floors on trains.

- 3. Proposed test for Smoke and Toxic Gas production
- Smoke test and analysis of toxic gases

• Criteria: Requirements on smoke density and concentration of toxic species.

4. Proposed test for Seats

Measurement of heat release

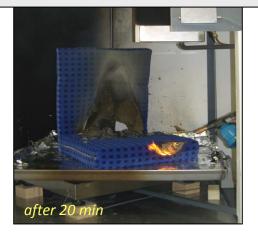


• Criterion: Maximum Average Rate of Heat Emission < 50 kW. Same as for seats on trains.

Observations

Bus upholstered seat





Railway upholstered seat

ProdNo.	ISO 3795 / FMVSS 302	ISO 6941	ISO5658-2 / SSoF
1	pass	fail	fail
2	pass	pass	pass
3	fail	pass	fail
4	pass	pass	fail
5	pass	fail	fail
6	pass	fail	fail
7	pass	fail	pass
8	pass	fail	pass
9	pass	pass	pass
10	pass	pass	pass
11	pass	fail	fail
12	pass	fail	fail
13	pass	fail	fail
14	pass	pass	fail
15	pass	pass	pass
16	pass	pass	pass 26
17	pass	pass	pass

Conclusions

- Lack of requirements for an acceptable level of fire safety for interior materials. (Replacement of horizontal burning rate test with vertical burning rate test was however a step in the right direction.)
- This can be accomplished using established international fire tests, already used for train interiors. Therefore <u>complying materials already exist on the market</u>
- A proposed solution was presented in draft amendment to Reg. No. 118 in informal document GRSG 95-19.

Outline

- Bus fires background
- Recent fire safety development
 - Interior materials
 - Fire suppression
 - Fire detection
 - Prevention/Safety management
- Ideas for further development
 - Toxicity
 - Fire detection
 - Protection of energy storage

Automatic fire suppression systems for engine compartments in coaches and buses: regulations and standards.

Presentation at GRSG 98, May 3-7, 2010

Asbjørn Hagerupsen¹, Jan Petzäll² and Michael Försth³

¹Norwegian Public Roads Administration

²Swedish Transport Agency

³SP Technical Research Institute of Sweden

Before 2004:

Approximately six to seven complete burnouts of buses each year in Sweden due to fires that started in the engine compartment.

2004:

Swedish insurance companies requested that all buses should be equipped with an approved fire suppression system in the engine compartment.

2004-2012:

No complete burnouts of buses due to such fires

Regulations and legislation works!

Test method – a new approach

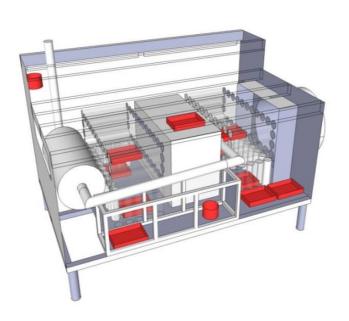
New approach: Combine repeatable test methods with realistic fire scenarios

Identified properties which are important to include in the test:

- Complex geometry with many obstructions
- High air flow
- Multiple fire locations
- Different fire scenarios
- Hot surfaces with re-ignition potential
- Two parts of the project:
 - Fire suppression performance (finalized in 2013) → Amendment of Regulation No. 107
 - Fire detection capability (finalized 2016)

Outline

- Bus fires background
- Recent fire safety development
 - Interior materials
 - Fire suppression
 - Fire detection
 - Prevention/Safety management
- Ideas for further development
 - Toxicity
 - Fire detection
 - Protection of energy storage

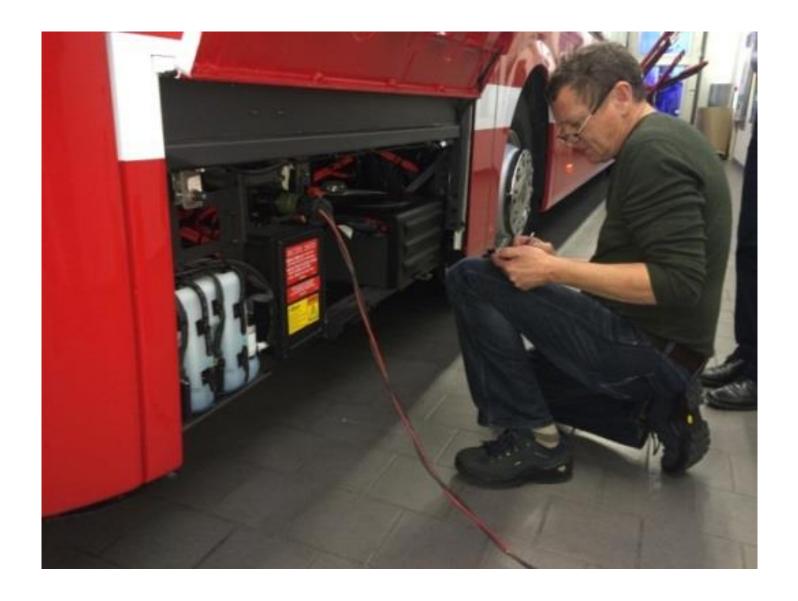


SP method 5320 – testing of fire detection systems

• Test method for fire detection systems installed in engine compartments of heavy vehicles

Outline

- Bus fires background
- Recent fire safety development
 - Interior materials
 - Fire suppression
 - Fire detection
 - Prevention/Safety management
- Ideas for further development
 - Toxicity
 - Fire detection
 - Protection of energy storage



Preventive fire safety

Safety Management with regard to fire

P-certification for vehicle manufacturers, operators and service centers (workshops) with regard to fire safety

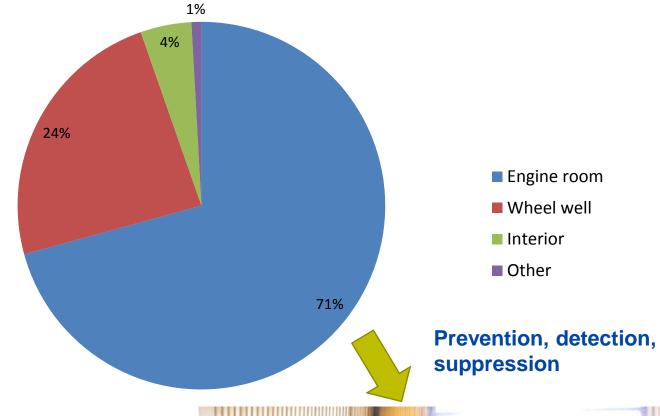
- vehicle manufacturer
- poperator
- workshop

SPCR - Certification rules

SPCR 191 - Certification rules for <u>operators</u> with respect to vehicle fire safety

Co-operation with IRU

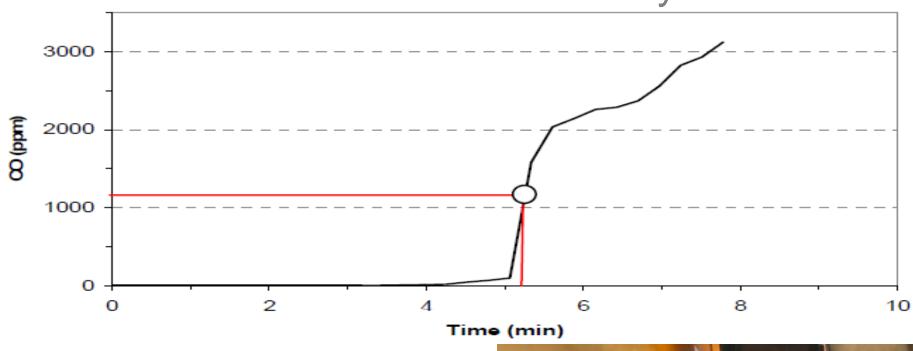
- Bus fires background
- Recent fire safety development
 - Interior materials
 - Fire suppression
 - Fire detection
 - Prevention/Safety management
- Ideas for further development
 - Toxicity
 - Fire detection
 - Protection of energy storage



Gap analysis

Prevention, detection, fire hardening, prolonging tenability conditions in passanger compartment

- Bus fires background
- Recent fire safety development
 - Interior materials
 - Fire suppression
 - Fire detection
 - Prevention/Safety management
- Ideas for further development
 - Toxicity
 - Fire detection
 - Protection of energy storage



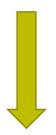
Toxicity

Focus on the production of toxic gases, starting from the side of the expected fire.

- Bus fires background
- Recent fire safety development
 - Interior materials
 - Fire suppression
 - Fire detection
 - Prevention/Safety management
- Ideas for further development
 - Toxicity
 - Fire detection
 - Protection of energy storage

Detection 3000 (mdd) ∞ 2000 1000 0 -2 O 8 10 Time (min) Regulation No 107

- Bus fires background
- Recent fire safety development
 - Interior materials
 - Fire suppression
 - Fire detection
 - Prevention/Safety management
- Ideas for further development
 - Toxicity
 - Fire detection
 - Protection of energy storage



Post-collision fires

- In U.S.A. 31 vehicle fires are reported per hour and these are responsible for around 300 deaths. These fires are involved in 12 % of fire deaths.
- Trends indicate that the survivable collision energy will continue to increase and, at the same time, the probability of post-crash fires rises with the collision energy
- As crashes are expected to become more survivable with advanced technology, fire events might become even more relevant

Acknowledgements

- Transportstyrelsen (Sweden)
- Statens vegvesen (Norway)
- FFI (Strategic vehicle research and innovation, Sweden)
- BAM
- SP/RISE

THANK YOU, QUESTIONS?

Michael Försth

michael.forsth@ri.se

+46 - (0)10- 516 52 33

RISE Research Institutes of Sweden

Fire Research

