
Informal Document - ACSF-19-04

Submitted by Industry

Driver Monitoring in the Context of Automated Driving Ensure Smooth Transition Phases

One key factor in take-over scenarios is **Driver Availability Recognition**

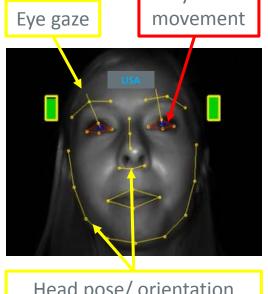
Drivers are attentive when their eyes are on the road

To know if a driver has the eyes on the road, it is crucial to **monitor the eyes**

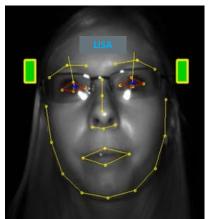
Eye gaze can only be monitored with a **visual system**

Interior Camera is **suitable** for **Driver Monitoring**

Driver Monitoring via Interior Camera Head-Eye-Tracking System


Head-Eye-Tracker (based on visual features)

- Global Shutter Camera
- IR Illumination (850 nm or 940 nm)
- Potential Mounting Positions:


Occlusions are handled dynamically

- First SOP: February 2018
- More SOPs: 2019, 2020 and 2021

Eve lid

Head pose/ orientation based on landmarks: eyes, nose ridge (important), lower nose, face contour, eye brows, mouth/lips

LISA

The Interior
Camera can look
through
'normal' glasses

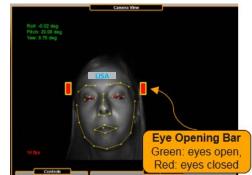
and through

sunglasses¹

(also deals with e.g. face masks, beard)

¹Exception: IR blocking sunglasses

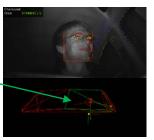
Driver Monitoring via Interior Camera Current Use Cases (Examples)


Driver Drowsiness Detection

Diagnostic from Eye Lid Behavior

 Developed from real driving tests using EEG/EOG expertise

- → based on blink duration and velocity
- E.g. 4 levels derived from Karolinska Sleepiness Scale (KSS)



Detection if the eyes are open, closed, or partially open/closed: Percentage of Closure (PerClos)¹

Driver Attentiveness Detection

"On-road" gaze classification

 → Fusion of head pose and eye gaze: "Virtual window" ~ defined for on-road

Glance duration (eye gaze being off-road) and frequency

Gaze area (e.g., mirrors, cluster)

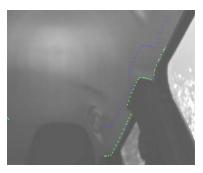
Vehicle speed (influences classification sensitivity)

Attentive

Distracted

¹ Knippling, R. and P. Rau (1998) PERCLOS: A valid Psychological Measure of Alertness as Assessed by Psychomotor Vigilance

Driver Monitoring via Interior Camera Robustness and Safety Functionality


Fail Safe Functions: Camera blockage, fake detection

Liveliness (e.g. eye blinks)

- Online Extrinsic Calibration
 - Misalignment calibration of the camera pose
 w. r. t. the car coordinate system
 - Robust against environmental light and occlusions

Algorithms Performance

- Test Data base:
 - Variety of faces and attributes to faces (e.g. hairstyle, glasses)
 - Illumination
 - Driving data sequences
 - Ground Truth¹ data
- Ground Truth and Reference System

¹Ground Truth = Reference system

Driver Monitoring via Interior Camera System Capabilities & Limitations

Requirement	Specification	Capabilities	Limitations
Driver Presence	Yes/No	✓detects head and/or body	Must be within sensor range
Driver Readiness	Attentive	✓eye gaze, head pose (position/ orientation)	Must be within sensor range Reduced reliability if eyes are not visible to the camera
	Awake (drowsiness)	 ✓ multiple levels → direct detection of closed eyes; high correlation of drowsiness detection via eye opening, behavior: yawning, speaking, head movement 	Must be within sensor range Reduced reliability if eyes are not visible to the camera

ANNEX

Possible Future Testing Concepts Combination of Basic and Virtual Testing

- A. Normed dummy (incl. eye blinking, head movements)
 - Defined test scenario for basic functionality of Driver Presence and Driver Readiness (attentive, awake)
 - Physical test (spot sample), e.g. detect eye lid behavior (open/closed), body/ head rotation

B. Virtual/ simulated tests

- Cover variations for different people, situations, driving scenarios, etc.
- Verification of the function

